Cho tam giác ABC , C = 60 độ, hình chiếu vuông góc với AB , AC lên BC theo thứ tự bằng 5 và 7 . Tính các góc đường cao tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
\(\Delta ABH\)vuông ,ta có:
\(\tan B=\frac{AH}{BH}\Rightarrow AH=BH.\tan B=12.\tan60^o\approx16,517cm\)
\(\cos B=\frac{BH}{AB}\Rightarrow AB=\frac{BH}{\cos B}=\frac{12}{\cos12^o}\approx12,216cm\)
\(\tan C=\frac{AH}{HC}=\frac{16,517}{18}\approx0,918\Rightarrow C\approx26^o\)
\(\cos C=\frac{HC}{AC}\Rightarrow AC=\frac{HC}{\cos C}=\frac{18}{\cos26^o}\approx19,613cm\)
Vậy \(AH\approx16,517cm\)
\(AB=12,216cm\)
\(AC=19,613cm\)
a:Xét ΔAHB vuông tại H có
cosB=BH/AB
=>12/AB=cos60=1/2
=>AB=24(cm)
BC=BH+CH=30(cm)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(24^2+30^2-AC^2=24\cdot30=720\)
=>\(AC=6\sqrt{21}\left(cm\right)\)
b: ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH=12*căn 3(cm)
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)
c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAFE vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)
Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)
Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)
Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)
Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)
Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)
Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)
Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)
Gọi G là trong tâm tam giác ABC ta có B′G⊥(ABC)Từ đó B′BCG^=600 là góc mà B′B′ tạo với mặt phẳng (ABC). Trong tam giác vuông BB′G ta có ngay: BG=a2,B′G=a3√2BG=a2,B′G=a32
Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
AC=x,BC=x3√AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BG∩ACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VA′ABC=13SABC.B′G=13.12.AB.BC.a3√2=a3√12x.x3√=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA′.ABC=9a3208VA′.ABC=9a3208 (đvtt)
sorry , tính các cạnh các góc và đường cao của tam giác ABC