K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

H�nh tam gi�c TenDaGiac1: Polygon B, A, C H�nh tam gi�c TenDaGiac1_1: Polygon B', A', C' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a G, B, B' G�c ?: G�c gi?a B, A, C G�c ?: G�c gi?a B, A, C ?o?n th?ng c: ?o?n th?ng [B, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [A, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng c_1: ?o?n th?ng [B', A'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng a_1: ?o?n th?ng [A', C'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng b_1: ?o?n th?ng [C', B'] c?a H�nh tam gi�c TenDaGiac1_1 ?o?n th?ng d: ?o?n th?ng [B', B] ?o?n th?ng e: ?o?n th?ng [C', C] ?o?n th?ng f: ?o?n th?ng [A', A] ?o?n th?ng g: ?o?n th?ng [B', G] ?o?n th?ng h: ?o?n th?ng [B, G] ?o?n th?ng i: ?o?n th?ng [G, M] B = (-2.08, 1.4) B = (-2.08, 1.4) B = (-2.08, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) A = (3.04, 1.4) C = (0.1, -0.66) C = (0.1, -0.66) C = (0.1, -0.66) B' = (0.38, 4.84) B' = (0.38, 4.84) B' = (0.38, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) A' = (5.5, 4.84) C' = (2.56, 2.78) C' = (2.56, 2.78) C' = (2.56, 2.78) ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m G: (B + A + C) / 3 ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A ?i?m M: Trung ?i?m c?a C, A

Góc giữa BB' và (ABC) là \(\widehat{B'BG}=60^0\). Suy ra đường cao \(B'G=BB'.\sin60^0=\dfrac{a\sqrt{3}}{2}\)

Lại có \(BG=BB'.\cos60^0=\dfrac{a}{2}\)

Gọi M là trung điểm AC thì \(BM=\dfrac{3}{2}BG=\dfrac{3a}{4}\)

Đặt AC=x thì \(BC=AC.\tan 60^0=x\sqrt{3}\)

Suy ra \(BM=\sqrt{BC^2+CM^2}=\sqrt{3x^2+\dfrac{x^2}{4}}=\dfrac{x\sqrt{13}}{2}=\dfrac{3a}{4}\). Suy ra \(x=\dfrac{3a\sqrt{13}}{26}\)

Do đó \(S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{x^2\sqrt{3}}{2}=\dfrac{9a^2\sqrt{3}}{52}\)

Vậy \(V_{A'ABC}=\dfrac{1}{3}BB'.S_{ABC}=\dfrac{3a^2\sqrt{3}}{52}\)

1 tháng 4 2016

Gọi G là trong tâm tam giác ABC ta có BG(ABC)Từ đó B′BCG^=600 là góc mà BB′ tạo với mặt phẳng (ABC). Trong tam giác vuông BBG ta có ngay: BG=a2,BG=a32BG=a2,B′G=a32



 Đặt AB=2xAB=2x, trong tam giác vuông ABCABC ta có:
  AC=x,BC=x3AC=x,BC=x3 (do ABCˆ=600ABC^=600)
Giả sử BGACBG∩AC thì BN=a2BG=3a4BN=a2BG=3a4.
Áp dụng định lí py ta go trong tam giác vuông BNCBNC ta có:
  BN2=NC2+BC29a216=x24+3x2x2=9a252(1)BN2=NC2+BC2⇒9a216=x24+3x2⇒x2=9a252(1)
ta có VAABC=13SABC.BG=13.12.AB.BC.a32=a312x.x3=ax24(2)VA′ABC=13SABC.B′G=13.12.AB.BC.a32=a312x.x3=ax24(2)
thay (2)(2) vào (1)(1) ta có: VA.ABC=9a3208VA′.ABC=9a3208    (đvtt)

28 tháng 8 2019

Đáp án A

5 tháng 11 2019

Đáp án B

4 tháng 8 2018

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

8 tháng 10 2017

7 tháng 10 2018

Chọn D

20 tháng 11 2018

Đáp án C

2 tháng 4 2016

A B H C C' A' B'

Gọi H là trung điểm của cạnh BC. Suy ra :

\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)

Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)

Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)

Trong tam giác vuông A'B'H ta có :

\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'

Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)

Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)

22 tháng 9 2016

tại sao tam giác A'B'H lại vuông tại A' ạ??

22 tháng 8 2017

Đáp án A

Gọi H là trung điểm của BC, giao điểm của (P) và A A '  là P.

∆ A H P    vuông tại P có  A P = A H 2 - P H 2 = 3 a 4

∆ A A ' O ~ ∆ A H P ⇒ A ' O A O = H P A P

⇒ V A B C . A ' B ' C ' = O A ' . S A B C = a 3 3 12