K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023


Ta có: tam giác vuông EBH \(\sim\) tam giác vuông ABC (gt)
=>\(\dfrac{S\Delta EBH}{S\Delta ABC}=\left(\dfrac{BH}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta EBH}}{\sqrt{S\Delta ABC}}=\dfrac{BH}{BC}\left(1\right)\)
Ta có tam giác vuông FHC \(\sim\) tam giác vuông ABC (g.g)
=>\(\dfrac{S\Delta FHC}{S\Delta ABC}=\left(\dfrac{HC}{BC}\right)^2\Rightarrow\dfrac{\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HC}{BC}\left(2\right)\)
\(\)Từ (1)và (2) =>\(\dfrac{\sqrt{S\Delta EBH}+\sqrt{S\Delta FHC}}{\sqrt{S\Delta ABC}}=\dfrac{HB+HC}{BC}=\dfrac{BC}{BC}=1\)
Vậy \(\sqrt{S\Delta_{EBH}}+\sqrt{S\Delta_{FHC}}=\sqrt{S\Delta_{ABC}}\left(đpcm\right)\)
chucbanhoctot!

26 tháng 8 2023

thực ra ở đây ko thể c/m đc yêu cầu của bạn đâu, cần phải có AEHF là hcn mới ra cơ ạ 

25 tháng 8 2018

Gọi I là trung điểm của BC

Xét tam giác ABC vuông tại A có AI là đường trung tuyến nên \(AI=\frac{1}{2}BC\)

Theo quan hệ đường xiên và đường vuông góc ta có \(AH\le AI\Rightarrow AH\le\frac{1}{2}BC\)\(\Rightarrow\frac{AH}{BC}\le\frac{1}{2}\)(1)

Ta có \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN}{\frac{1}{2}AH.BC}=\frac{AH^2}{AH.BC}=\frac{AH}{BC}\)(2)

Từ (1) (2) suy ra \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)

25 tháng 8 2018

rảnh quá ha...ko có gì làm hay sao vậy

11 tháng 5 2019

a) xét ta giác AHM và tam giác ACH có

góc AMH =góc AHC=90o

AH cạnh chug

góc A chug

=> tam giác AHM= tam giác ACH

23 tháng 5 2018

A B C H E D a)Xét tam giác HAC và tam giác ABC có :

Góc AHC = góc BAC ( = 90o)

Góc BCA chung

⇒ Tam giác HAC ~ Tam giác ABC ( TH3 )

b) Xét tam giác AHD và tam giác ABH có :

Góc HAB chung

Góc ADH = Góc AHB ( = 90o)

⇒ Tam giác AHD ~ Tam giác ABH ( TH3)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\)

⇒ AH2 = AB.AD

c) Xét tam giác AEH và tam giác AHC có :

Góc HAC chung

Góc AEH = góc AHC ( = 90o)

⇒ Tam giác AEH ~ Tam giác AHC ( TH3)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

⇒ AH2 = AE.AC

Mà : AH2 = AD.AB ( Câu b)

⇒ AE.AC = AD.AB

d) Do : AE.AC = AD.AB ( Câu c)

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

Xét tam giác AED và tam giác ACB có :

Góc BAC chung

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\) ( cmt)

⇒Tam giác AED ~ Tam giác ACB ( TH2)

\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2\)

P/S : Hình như thiếu dữ kiện , chưa cho AH nên ko ra số cụ thể

22 tháng 5 2018

â)xét tam giác hac và tam giác abc có:

​góc c chung

góc ahc= góc bac=90 độ

​suy ra tam giác hac đồng dạng với tam giác abc(g.g)

b)xét tam giác ahb và tam giác adh có

góc ahb= góc adh=90 độ

góc a chung

suy ra tam giác ahb đồng dạng với tam giác adh(g.g)

ta có:ah^2=ab.ad

13 tháng 9 2016

Cô hướng dẫn nhé.

a. Kẻ \(DK\perp BC.\)

Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)

b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)

\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)

c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)