K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
3 tháng 7

\(\dfrac{1}{a^{150}}< \left(\dfrac{1}{5}\right)^{225}\\ \Rightarrow\left(\dfrac{1}{a}\right)^{150}< \left(\dfrac{1}{5}\right)^{225}\\ \Rightarrow\left[\left(\dfrac{1}{a}\right)^2\right]^{75}< \left[\left(\dfrac{1}{5}\right)^3\right]^{75}\\ \Rightarrow\left(\dfrac{1}{a}\right)^2< \left(\dfrac{1}{5}\right)^3\\ \Rightarrow\dfrac{1}{a^2}< \dfrac{1}{5^3}\\ \Rightarrow a^2>5^3\\ \Rightarrow a^2>125\)

Mà: a là số nguyên dương nhỏ nhất

Vậy: a = 12

3 tháng 7

a; A =  \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)

   A =     \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)

   A =      \(\dfrac{15}{x+2}\) +  \(\dfrac{14}{x+2}\) 

   A = \(\dfrac{29}{x+2}\) 

3 tháng 7

b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)

   A  \(\in\) Z ⇔ 29 ⋮ \(x\) + 2

   \(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}

 Lập bảng ta có: 

\(x\) + 2 - 29 - 1 1 29
\(x\) -31 -3 -1 27

Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}

Vậy \(x\) \(\in\) {-31; -3; -1; 27}

  

 

 

3 tháng 7

3 tháng 7

20 tháng 1 2017

Làm khâu rút gọn thôi 

\(=\frac{15}{x+2}+\frac{42}{3x+6}\)

\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)

\(=\frac{3.15+42}{3\left(x+2\right)}\)

\(=\frac{87}{3\left(x+2\right)}\)

\(=\frac{29}{x+2}\)

20 tháng 1 2017

Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm 

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

21 tháng 11 2017

Chọn đáp án B

Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.

22 tháng 3 2016

tớ làm song bài này lâu rôi

22 tháng 3 2016

A =15/x+2 + 14/x+2 = 29/x+2

b) x+2 là U(29) = { -1;1;-29;29}

=> x ={ -3;-1;-31;27}

22 tháng 3 2016

Giúp mk đi