K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6

\(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2023}{2^{2022}}\)

\(A=1+\dfrac{2}{2}-\dfrac{1}{2}+\dfrac{3}{2^2}-\dfrac{2}{2^2}+...+\dfrac{2023}{2^{2022}}-\dfrac{2022}{2^{2022}}-\dfrac{2023}{2^{2023}}\)

\(A=1-\dfrac{2023}{2^{2023}}+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\)

Gọi biểu thức: \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}=B\)

\(2B=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}\)

\(B=1-\dfrac{1}{2^{2022}}\)

\(A=1-\dfrac{2023}{2^{2023}}+1-\dfrac{1}{2^{2022}}\)

\(A=2-\left(\dfrac{2023}{2^{2023}}+\dfrac{1}{2^{2022}}\right)\)

\(\Rightarrow A< 2\)

17 tháng 9 2023

Các P/S đó > 3 nhé#

Kí hiệu # : nhận biết đây là tips, câu hỏi, câu trl của riêng mình, tuyệt đối ko copy dưới mọi hình thức. Trừ khi các bn đc sự cho phép của mik^^

17 tháng 9 2023

>3 nhé

#Ko dựa trên căn bản kĩ thuật nào nên có thể có sai sót mong bn bỏ qua

28 tháng 7 2023

\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)

\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)

Ta có

\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)

\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)

\(\Rightarrow C>D\)

 

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B 

12 tháng 3 2023

\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)

\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)

Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)

=> 8A>8B

=> A>B

12 tháng 3 2023

thanks

 

5 tháng 6 2023

\(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\)

\(3A=2+\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2022}}\)

\(3A-A=\left(2+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{2}{3^{2022}}\right)-\left(\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2023}}\right)\)

\(2A=2-\dfrac{2}{3^{2023}}\)

\(A=\left(2-\dfrac{2}{3^{2023}}\right)\times\dfrac{1}{2}\)

\(A=2\times\dfrac{1}{2}-\dfrac{2}{3^{2023}}\times\dfrac{1}{2}\)

\(A=1-\dfrac{1}{3^{2023}}\)

=> \(A< 1\left(đpcm\right)\)

A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)

\(1-\dfrac{1}{2023}\)

\(\dfrac{2022}{2023}\)