K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2024

Em vui lòng xem lại xem mình chép đề bài đã đầy đủ chưa em nhé!

21 tháng 5 2020

ewewdscx

11 tháng 12 2023

Các bạn đặt câu hỏi về đề Toán lớp 4 đi

TT
11 tháng 12 2023

Cậu trả lời đi, sáng mai tớ phải nộp rồi. Nhanh nhé, tớ tìm cho

1) Ta có: \(a>b\)

\(\Leftrightarrow-2020a< -2020b\)(nhân hai vế của bất đẳng thức cho -2020 và đổi dấu)

\(\Leftrightarrow-2020a+2021< -2020b+2021\)(cộng hai vế của bất đẳng thức cho 2021)(đpcm)

2) Ta có: \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)

\(\Leftrightarrow-2-7x>3+2x-5+6x\)

\(\Leftrightarrow-2-7x>8x-2\)

\(\Leftrightarrow-2-7x-8x+2>0\)

\(\Leftrightarrow-15x>0\)

\(\Leftrightarrow-15x\cdot\frac{-1}{15}< 0\cdot\frac{-1}{15}\)(nhân hai vế của bất đẳng thức cho \(-\frac{1}{15}\) và đổi dấu)

hay x<0

Vậy: S={x|x<0}

15 tháng 5 2022

`1/[2^2]+1/[3^2]+1/[4^2]+....+1/[2021^2] < 1/[1.2]+1/[2.3]+1/[3.4]+....+1/[2020.2021]`

  `=>A < 1-1/2+1/2-1/3+1/3-1/4+....+1/2020-1/2021`

  `=>A < 1-1/2021`

  `=>A < 2020/2021`

 Mà `2020/2021 < 1`

  `=>A < 1`

 

15 tháng 5 2022

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< 1\)

\(A=\dfrac{1}{\left(2+3+4+...+2021\right)^2}< 1\)

\(A=\dfrac{1}{\left(2021-2+1\right)^2}< 1\)

\(A=\dfrac{1}{\left(2020\right)^2}< 1\)

\(A=\dfrac{1}{2020\cdot2020}< 1\)

 

\(A=\dfrac{1}{2020}< 1\)

23 tháng 7 2023

Hôm nay olm.vn sẽ hướng dẫn các em giải toán nâng cao chuyên đề số chính phương. Chứng minh một số không phải là số chính phương dựa vào tính chất của số chính phương (xét chữ số tận cùng).

A = 12021 + 22021 + 32021+...20212021 + 20222021  

Nhóm 10 số hạng liên tiếp của tổng A thành 1 nhóm.

 Vì 2022 :  10 = 202 dư 2

Khi đó tổng A là tổng của 202 nhóm và 20212021 + 20222021

Chữ số tận cùng của mỗi nhóm là như nhau và bằng chữ số tận cùng của tổng sau: 

02021 + 12021 + 22021+32021+42021+52021+62021+....+92021

Từ những lập luận trên ta có Chữ số tận cùng của tổng A là chữ số tận cùng của B với B thỏa mãn:

B = (02021 + 12021 + 22021+...+92021\(\times\) 202 + 20212021+20222021

Đặt C = 02021+12021 + 22021+...+92021

C = (04)505.0 + (14)505.1+ (24)505.2 +(34)505.3+(44)505.4+...+(94)505.9

C = 0 + 1 + \(\overline{..2}\) + \(\overline{..3}\)\(\overline{..4}\) + \(\overline{..5}\) + \(\overline{..6}\) + \(\overline{..7}\) + \(\overline{..8}\) + \(\overline{..9}\)

C = \(\overline{..5}\)

B = \(\overline{..5}\) \(\times\) 202 + 20212021+ 20222021

B = \(\overline{..0}\) + \(\overline{..1}\) +  ( \(\overline{..2}\))505.2 = \(\overline{..0}\)+\(\overline{...1}\)+\(\overline{..6}\)505.2 = \(\overline{..0}\)+\(\overline{..1}\)+\(\overline{..2}\) = \(\overline{..3}\)

A = \(\overline{..3}\)  vậy A không phải là số chính phương (đpcm) vì số chính phương không thể có tận cùng là 2; 3; 7; 8

    

Giả sử tất cả các số đã cho đều lẻ

=>Quy đồng, ta được:

\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)

Tử có 2022 số hạng, mẫu là số lẻ

=>A là số chẵn khác 1

=>Trái GT

=>Phải có ít nhất 1 số là số chẵn

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)