K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(a>b\)

\(\Leftrightarrow-2020a< -2020b\)(nhân hai vế của bất đẳng thức cho -2020 và đổi dấu)

\(\Leftrightarrow-2020a+2021< -2020b+2021\)(cộng hai vế của bất đẳng thức cho 2021)(đpcm)

2) Ta có: \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)

\(\Leftrightarrow-2-7x>3+2x-5+6x\)

\(\Leftrightarrow-2-7x>8x-2\)

\(\Leftrightarrow-2-7x-8x+2>0\)

\(\Leftrightarrow-15x>0\)

\(\Leftrightarrow-15x\cdot\frac{-1}{15}< 0\cdot\frac{-1}{15}\)(nhân hai vế của bất đẳng thức cho \(-\frac{1}{15}\) và đổi dấu)

hay x<0

Vậy: S={x|x<0}

13 tháng 3 2022

gọi 2021-x = a

2023-x=b

2x-4044=c

ta có a + b + c=2021-x+2023-x+2x-4044=0

suy ra a + b = -c

suy ra (a+b)^3 =-c^3

ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc 

ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0

=> 3(2021-x)(2023-x)(2x-4044)=0

=> th 1 x = 2021,  th 2 x = 2023; th3 x = 2022

15 tháng 6 2019

Ta có: -2 – 7x > (3 + 2x) – (5 – 6x) ⇔ -2 – 7x > 3 + 2x – 5 + 6x

⇔ -7x – 2x – 6x > 3 – 5 + 2

⇔ -15x > 0 ⇔ x < 0

Vậy tập nghiệm của bất phương trình là: {x|x < 0}

21 tháng 10 2021

\(\left(3x+2\right).\left(2x-1\right)-6x.\left(x-1\right)-7x+4\)

\(=\left(6x^2-3x+4x-2\right)-\left(6x^2-6x\right)-7x+4\)

\(=6x^2+x-2-6x^2+6x-7x+4\)

\(=\left(6x^2-6x^2\right)+\left(x+6x-7x\right)+\left(-2+4\right)\)

\(=2\)

Vậy giá trị biểu thức không phụ thuộc vào biến \(x\)

12 tháng 11 2021

67996

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

7 tháng 12 2021

\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

1 tháng 11 2020

a.
2x+16x^3+7x^2+x+33x^2+2x6x^3+3x^24x^2+x+34x^2+2x-x+3

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)