Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+1.2+1.2.3+...+1.2.3.....n\)
\(=1!+2!+3!+4!+...+n!\)
Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.
Ta lại có:
\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)
\(=33+\left(...0\right)\)
\(=\left(...3\right)\)
Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.
Ta có :
A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n
A = 1! + 2! + 3! + 4! + ... + n!
Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5) nên tổng của chúng cũng tận cùng là 0.
\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0)
A = (......3) + (.....0)
A = (......3)
Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)
bạn ơi hình như đề bài là:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.
a: B=1-1/2+1/2-1/3+...+1/2020-1/2021
=1-1/2021=2020/2021
b:
1/2^2+1/3^2+...+1/2021^2>0
=>A>1
1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021
=>A<2020/2021+1
mà A>1
nên 1<A<1+2020/2021
=>A ko là số nguyên