K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

ewewdscx

6 tháng 3 2015

Ta có:

\(A=1+1.2+1.2.3+...+1.2.3.....n\)

     \(=1!+2!+3!+4!+...+n!\)

Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.

Ta lại có:

\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)

     \(=33+\left(...0\right)\)

     \(=\left(...3\right)\)

Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.

15 tháng 2 2021

Ta có :

A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n

A = 1! + 2! + 3! + 4! + ... + n!

Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5)  nên tổng của chúng cũng tận cùng là 0.

\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0) 

A = (......3) + (.....0)

A = (......3)

Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)

B chăng:D

29 tháng 10 2021

là B hay D vậy bạn

9 tháng 5 2018

bạn ơi hình như đề bài là: 

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.

8 tháng 5 2018

A=49/51

8 tháng 5 2018

Mình nhầm 49/1234

a: B=1-1/2+1/2-1/3+...+1/2020-1/2021

=1-1/2021=2020/2021

b:

1/2^2+1/3^2+...+1/2021^2>0

=>A>1

1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021

=>A<2020/2021+1

mà A>1

nên 1<A<1+2020/2021

=>A ko là số nguyên