\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
Tính?
ai giúp mik đi mik đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{98}+\dfrac{2}{192}\)
\(2A=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{98}+\dfrac{2}{192}\)
\(2A-A=\left(\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{98}+\dfrac{2}{192}\right)-\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{98}+\dfrac{2}{192}\right)\)
\(A=\dfrac{4}{3}-\dfrac{2}{192}\)
\(A=\dfrac{127}{96}\)
Vậy \(A=\dfrac{127}{96}\)
Mình hơn nhầm ở chỗ 98 viết lại thành 96. thông cảm nha mình làm lại cho:
Đặt \(A=\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(2A=\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(2A-A=\left(\dfrac{4}{3}+\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{96}+\dfrac{2}{192}\right)-\left(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\right)\)
\(A=\dfrac{4}{3}-\dfrac{2}{192}\)
\(A=\dfrac{127}{96}\)
Vậy \(A=\dfrac{127}{96}\)
\(\left(-\dfrac{2}{5}\right)^2\cdot\left|\dfrac{1}{3}-\dfrac{3}{5}\right|-\dfrac{2}{5}\cdot\sqrt{\dfrac{1}{25}}+\dfrac{4}{3}\)
\(=\dfrac{4}{25}\cdot\dfrac{4}{15}-\dfrac{2}{5}\cdot\dfrac{1}{5}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{2}{25}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{30}{375}+\dfrac{500}{375}\)
\(=\dfrac{486}{375}=\dfrac{162}{125}\)
a: Ta có: \(A=\dfrac{1}{2}\)
\(\Leftrightarrow x+2=2x-6\)
\(\Leftrightarrow-x=-8\)
hay x=8
Thay x=8 vào B,ta được:
\(B=-\dfrac{2}{8+2}=-\dfrac{2}{10}=-\dfrac{1}{5}\)
A bn lướt xuống dưới mà xem cách làm
nhưng của bn là cho 3 ra ngoài nha
\(1\dfrac{4}{5}+2\dfrac{5}{7}+3\dfrac{4}{5}+4\dfrac{5}{7}\)
\(\text{=}\left(1\dfrac{4}{5}+3\dfrac{4}{5}\right)+\left(2\dfrac{5}{7}+4\dfrac{5}{7}\right)\)
\(\text{=}1+3+\left(\dfrac{4}{5}+\dfrac{4}{5}\right)+2+4+\left(\dfrac{5}{7}+\dfrac{5}{7}\right)\)
\(\text{=}10+\dfrac{8}{5}+\dfrac{10}{7}\text{=}131\dfrac{1}{35}\)
a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)
\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)
\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)
\(=\dfrac{3a-1}{2}\)
\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)
b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)
\(=\dfrac{1}{b-3}\)
\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)
\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)
a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\)
b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\)
\(\dfrac{x}{3}=\dfrac{-14}{15}\)
\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)
\(x=\dfrac{-2}{7}+\dfrac{9}{7}\)
\(x=1\)
`a, 2/3 +3/4 = (8+9)/12=17/12.`
`1 1/3+4/5 = 4/3 + 4/5 = (20+12)/15=32/15`.
`=> x=2.`
`b, 5/6-1/4=(20-6)/24=7/12`.
`2 1/3-2/5= 7/3-2/5 = (35-6)/15=29/15`.
`=> x=1`.
\(\dfrac{2}{3}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{24}+\dfrac{2}{48}+\dfrac{2}{96}+\dfrac{2}{192}\)
\(=\dfrac{2}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{63}{64}=\dfrac{21}{32}\)
A = \(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{24}\) + \(\dfrac{2}{48}\) + \(\dfrac{2}{96}\) + \(\dfrac{2}{192}\)
2 x A = \(\dfrac{4}{3}\) + \(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{24}\) + \(\dfrac{2}{48}\) + \(\dfrac{2}{96}\)
2 x A - A = \(\dfrac{4}{3}\) + \(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) + ... + \(\dfrac{2}{96}\) - (\(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) + ... + \(\dfrac{2}{96}\) + \(\dfrac{2}{192}\))
A x (2 - 1) = \(\dfrac{4}{3}\) + \(\dfrac{2}{3}\) + \(\dfrac{2}{6}\) + ... + \(\dfrac{2}{96}\) - \(\dfrac{2}{3}\) - \(\dfrac{2}{6}\) - ... - \(\dfrac{2}{96}\) - \(\dfrac{2}{192}\)
A = (\(\dfrac{4}{3}\) - \(\dfrac{2}{192}\))+ (\(\dfrac{2}{3}\) - \(\dfrac{2}{3}\)) + (\(\dfrac{2}{6}\) - \(\dfrac{2}{6}\)) + ... + (\(\dfrac{2}{96}\) - \(\dfrac{2}{96}\))
A = \(\dfrac{4}{3}\) - \(\dfrac{2}{192}\) + 0 + 0 + 0 + ... + 0
A = \(\dfrac{127}{96}\)