Cho biểu thức : S= \(\dfrac{5}{2^2}\)+\(\dfrac{5}{3^2}\)+\(\dfrac{5}{4^2}\)+....+\(\dfrac{5}{100^2}\)
Chứng minh 2<S<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\). Chứng minh A < 2.
\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)
=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)
=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)
=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)
=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)
=> \(A=2-\dfrac{102}{2^{100}}< 2\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)
5/2 - 1/4 + 5/3
= 10/4 - 1/4 + 5/3
= 9/4 + 5/3
= 27/12 + 20/12
= 47/12
11/2 : 1/4 x 5/3
= 11/2 x 4/1 x 5/3
= 44/2 x 5/3
= 220/6
= 110/3
14/5 x 2/3 + 5
= 28/15 + 5
= 28/15 + 75/15
= 103/15
S=5(1/2^2 + 1/3^2 + ...+ 1/100^2)
ta có
1/2^2 <1/1.2
1/3^2 <1/2.3
........
1/100^2 < 1/99.100
suy ra 1/2^2 + 1/3^2 + ...+ 1/100^2 <1/1.2 + 1/2.3 +...+ 1/99.100
suy ra 1/2^2 + 1/3^2 +.... 1/100^2 <1/1-1/2+1/2-1/3+..+1/99-1/100
suy ra 1/2^2 + 1/3^2 +...+ 1/100^2 <1/1 - 1/100
suy ra 5(1/2^2 + 1/3^2 +..+1/100^2) <5 (1/1-1/100)<5 (1)
lại có
1/2^2 >1/2.3
1/3^2 >1/3.4
......
1/100^2 > 1/100.101
suy ra 1/2^2 + 1/3^2 +....+ 1/100^2 >1/2.3 + 1/3.4 + ...+1/100 + 1/101
suy ra 1/2^2 +1/3^2 + .... + 1/100^2 >1/2-1/3+1/3-1/4+...+1/100-1/101
suy ra 1/2^2 +1/3^2 +...+1/100^2 >1/2-1/101=99/202
suy ra 5(1/2^2 + 1/3^2 +....+ 1/100^2)>5.99/202 =495/202>2 (2)
từ 1,2 suy ra 2<S<5