Cho hình chóp S.ABCD có SA vuông góc (ABCD), SA=3a, ABCD là hình vuông cạnh a.Tính khoảng cách giữa 2 đường thẳng AC và SB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Góc giữa SC và mặt đáy bằng 45 o ⇒ S C A ^ = 45 o
Xét tam giác SAC vuông tại A, ta có
Dựng hình bình hành ACBE
Gọi H là hình chiếu của A lên mặt phẳng (SBE).
Xét hình tứ diện vuông SABE có
Đáp án là D
+ Gọi O là giao điểm của AC,BD
⇒ MO \\ SB ⇒ SB \\ ACM
⇒ d SB,ACM = d B,ACM = d D,ACM .
+ Gọi I là trung điểm của AD ,
M I \ \ S A ⇒ M I ⊥ A B C D d D , A C M = 2 d I , A C M .
+ Trong ABCD: IK ⊥ AC (với K ∈ AC ).
+ Trong MIK: IH ⊥ MK (với H ∈ MK ) (1) .
+ Ta có: AC ⊥ MI ,AC ⊥ IK ⇒ AC ⊥ MIK
⇒ AC ⊥ IH (2) .
Từ 1 và 2 suy ra
IH ⊥ ACM ⇒ d I ,ACM = IH .
+ Tính IH ?
- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .
- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4
⇒ I H = a a 2 4 a 2 + a 2 8 = a 3
Vậy d S B , A C M = 2 a 3 .
Lời giải khác
Qua B kẻ đường thẳng song song AC cắt AD kéo dài tại E
Từ A kẻ \(AF\perp BE\) (F thuộc BE), từ A kẻ \(AH\perp SF\) (H thuộc SF)
\(AC||BE\Rightarrow AC||\left(SBE\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)
\(\left\{{}\begin{matrix}AF\perp BE\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BE\end{matrix}\right.\) \(\Rightarrow BE\perp\left(SAF\right)\)
\(\Rightarrow BE\perp AH\Rightarrow AH\perp\left(SBE\right)\)
\(\Rightarrow AH=d\left(A;\left(SBE\right)\right)\)
ACBE là hình bình hành (2 cặp cạnh đối song song) \(\Rightarrow AE=BC=AB=a\)
\(\Rightarrow\Delta ABE\) vuông cân tại A \(\Rightarrow AF=\dfrac{AB}{\sqrt{2}}=\dfrac{a\sqrt{2}}{2}\)
Hệ thức lượng tam giác vuông SAF:
\(AH=\dfrac{AF.SA}{\sqrt{AF^2+SA^2}}=\dfrac{3a\sqrt{19}}{19}\)