K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

12.1

Giả sử \(G=\left(m;2m-2\right)\left(m\in R\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_H=2x_E-x_G=6-m\\y_H=2y_E-y_G=2-2m\end{matrix}\right.\)

\(\Rightarrow H=\left(6-m;2-2m\right)\)

Mà \(H\in d_2\Rightarrow6-m+2-2m+3=0\Leftrightarrow m=\dfrac{11}{3}\)

\(\Rightarrow G=\left(\dfrac{11}{3};\dfrac{16}{3}\right)\)

\(\Rightarrow\Delta:8x-y-24=0\)

 

24 tháng 5 2021

12.2

Giả sử \(A=\left(m;-m-1\right)\left(m\in R\right)\)

Ta có: \(\vec{AM}=\dfrac{1}{3}\vec{MB}\)

\(\Rightarrow\left\{{}\begin{matrix}x_M-x_A=\dfrac{1}{3}\left(x_B-x_M\right)\\y_M-y_A=\dfrac{1}{3}\left(y_B-y_M\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-m=\dfrac{1}{3}\left(x_B-1\right)\\m+1=\dfrac{1}{3}.y_B\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_B=4-3m\\y_B=3m+3\end{matrix}\right.\)

\(\Rightarrow B=\left(4-3m;3m+3\right)\)

 Mà \(B\in d_2\Rightarrow4-3m-2\left(3m+3\right)+2=0\Leftrightarrow m=0\)

\(\Rightarrow A=\left(0;-1\right)\)

\(\Rightarrow d:x-y-1=0\)

18 tháng 3 2022

4/1 x 13/15

= 52/15

18 tháng 3 2022

52/15

30 tháng 12 2023

Bài 14:

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b: \(A=\dfrac{x}{2x+4}+\dfrac{3x+2}{x^2-4}\)

\(=\dfrac{x}{2\left(x+2\right)}+\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x\left(x-2\right)+2\left(3x+2\right)}{2\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x^2+4x+4}{2\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)\left(x-2\right)}=\dfrac{x+2}{2\left(x-2\right)}\)

c: Đặt B=2*A

\(\Leftrightarrow B=\dfrac{2\cdot\left(x+2\right)}{2\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Để B là số nguyên thì \(x+2⋮x-2\)

=>\(x-2+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;1;4;0;6\right\}\)

Bài 13:

1:

a: \(\dfrac{x^2-y^2}{x^2+xy}\cdot\dfrac{x+2y}{x-y}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}{x\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x+2y}{x}\)

b: \(x^2\cdot\left(2x-3y^2\right)-4xy\left(1-xy\right)-2x^3\)

\(=2x^3-3x^2y^2-4xy+4x^2y^2-2x^3\)

\(=x^2y^2-4xy\)

2:

\(f\left(x-2\right)=3\left(x-2\right)^2-4\)

\(=3\left(x^2-4x+4\right)-4\)

\(=3x^2-12x+8\)

\(f\left(4\right)=3\cdot4^2-4=48-4=44\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

11.

\(=\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{x-9}{(2-\sqrt{x})(\sqrt{x}+3)}+\frac{\sqrt{x}-2}{3+\sqrt{x}}+\frac{9-x}{(2-\sqrt{x})(\sqrt{x}+3)}\)

\(=\frac{\sqrt{x}-2}{3+\sqrt{x}}\)

 

 

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

12.

\(=\frac{(3-\sqrt{x})(3\sqrt{x}-2)+(5\sqrt{x}+7)(3\sqrt{x}+4)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\) 

\(=\frac{12x+52\sqrt{x}+22}{(5\sqrt{x}+7)(3\sqrt{x}-2)}-\frac{42\sqrt{x}+34}{(5\sqrt{x}+7)(3\sqrt{x}-2)}\)

\(=\frac{12x+10\sqrt{x}-12}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(3\sqrt{x}-2)(2\sqrt{x}+3)}{(5\sqrt{x}+7)(3\sqrt{x}-2)}=\frac{2(2\sqrt{x}+3)}{5\sqrt{x}+7}\)

 

 

21 tháng 7 2023

...=-15-9=-24

...=4+7=11

...=-12-13=-25

...=13+10=23

...=-4-7=-11

...=-9+13=4

...=12+0=12

...=0-7=-7

...=0+3=3

...=15-17=-2

...=-6

...=-23

...=15-15=0

GH
21 tháng 7 2023

-15-(+9) = -24

4-(-7) = 11

-12+(-13) = -25

-(-13)-(-10) = 23

-4-(+7) = -11

(-9)-(-13) = 4

-(-12)+0 = 12

0-(+7) = -7

0-(-3) = 3

15-17 = -2

-18+12 = -6

-5-18 = -23

-(-15)+(-15) = 0

23 tháng 8 2021

Bài 12:

a)Có \(H\left(-x\right)=\dfrac{1}{2}\left[f\left(-x\right)+f\left[-\left(-x\right)\right]\right]=\dfrac{1}{2}\left[f\left(-x\right)+f\left(x\right)\right]=H\left(x\right)\)

=>Hàm \(H\left(x\right)\) là hàm chẵn xác định trên S

b)\(G\left(-x\right)=\dfrac{1}{2}\left[f\left(-x\right)-f\left(-\left(-x\right)\right)\right]=\dfrac{1}{2}\left[f\left(-x\right)-f\left(x\right)\right]=-G\left(x\right)\)

=>Hàm \(G\left(x\right)\) là hàm chẵn xác định trên S

Bài 13:

Giải sử pt \(f\left(x\right)=g\left(x\right)\) có nghiệm là a

\(\Rightarrow f\left(a\right)=g\left(a\right)\)

Vì f(x) tăng trên R hay f(x) đồng biến, g(x) giảm trên R hay g(x) là nghịch biến

Tại \(x>a\Rightarrow f\left(x\right)>f\left(a\right)=g\left(a\right)>g\left(x\right)\)

Tại \(x< a\Rightarrow f\left(x\right)< f\left(a\right)=g\left(a\right)< g\left(x\right)\)

\(\Rightarrow\)Với \(x>a;x< a\) thì \(f\left(x\right)=g\left(x\right)\) vô nghiệm

Vậy \(f\left(x\right)=g\left(x\right)\) chỉ có nhiều nhất một nghiệm.

31 tháng 5 2016

Ta có : 13 = 1 + 12 = 2 + 11 = 3 + 10 = 4 + 9 = 5 + 8 = 6 + 7 

Mà là số có 2 chữ số bé nhất nên có 3 trường hợp 1 + 12 ; 2 + 11 ; 3 + 10

bị loại 

Vậy với các tổng còn lại ta lập được các số : 49 ; 94 ; 58 ; 85 ; 67 ; 76

Mà trong đó số bé nhất là 49 nên số cần tìm là 49

số cần tìm là 49 

ai tích mik mik tích lại nha 

5 tháng 10 2019

\(7^{13}:49^2=7^{13}:7^4=7^9\)

\(27^{16}:9^{10}=3^{48}:3^{20}=3^{28}\)

\(5^{20}\cdot9^{10}=5^{20}\cdot3^{20}=15^{20}\)

\(7^7\cdot13+7^7\cdot36=7^7\cdot\left(13+36\right)=7^7\cdot49=7^7\cdot7^2=7^9\)

\(5^{12}\cdot37-5^{12}\cdot12=5^{12}\cdot\left(37-12\right)=5^{12}\cdot25=5^{12}\cdot5^2=5^{14}\)