Bài 12 Cho đường thẳng (d): y = (m2 + 1) x + 2. Đường thẳng (d) cắt Ox tại A cắt Oy
tại B. Tìm m sao cho khoảng cách từ gốc toạ độ tới đường thẳng (d) lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
a) y = 2 => x = 2 hoặc -2 ( do có thể < 0 hay > 0 )
b) S(OAB) = 1 => |x| = 1 => x = 1 hoặc -1
c) Gọi khoảng cách từ O tới (d) là OH
OH bé hơn hoặc bằng khoảng cách 2 của O tới điểm cố định trên Oy
=> max = 2 khi d song^2 Ox => x = 0 => đúng mọi m
d) Thay vào biểu thức hệ thức lượng => khoảng cách từ O tới điểm mà d cắt trên Ox là 0 => d trùng Oy
e) thay x vào có kết quả
f) cắt tại điểm > 2 => biểu thức biểu diễn x > 2 ( -2/(m+3) )
PT giao Ox, Oy là:
\(y=0\Leftrightarrow x=\dfrac{2}{2m+1}\Leftrightarrow A\left(\dfrac{2}{2m+1};0\right)\Leftrightarrow OA=\dfrac{2}{\left|2m+1\right|}\\ x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\Leftrightarrow OB=2\)
\(a,\) Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=\sqrt{2}\)
Ap dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\left(2m+1\right)^2}{4}=\dfrac{1}{4}\Leftrightarrow4m^2+4m+1=1\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow OB\cdot OA=1\\ \Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
Cho \(x=0\Rightarrow y=-3\)
Cho \(y=0\Rightarrow x=3\)
\(A\left(3;0\right)\in\left(d\right);B\left(0;-3\right)\in\left(d\right)\)
Ta có: Tam giác OAB vuông tại O
\(OA=\left|3\right|=3\left(đvđd\right)\)
\(OB=\left|-3\right|=3\left(đvđd\right)\)
\(AB^2=OA^2+OB^2\)
\(\Leftrightarrow AB=\sqrt{3^2+3^2}=3\sqrt{2}\left(đvđd\right)\)
Kẻ \(OH\perp AB\) (\(H\in AB\) )
\(S_{OAB}=\dfrac{OA.OB}{2}=\dfrac{3.3}{2}=\dfrac{9}{2}\left(đvdt\right)\)
\(\Leftrightarrow\dfrac{9}{2}=\dfrac{1}{2}.AB.OH\)
\(\Leftrightarrow\dfrac{9}{4}=2\sqrt{3}.OH\)
\(\Leftrightarrow OH=\dfrac{3\sqrt{3}}{8}\left(đvđd\right)\)
Khoảng cách từ O đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\left(m^2+1\right)+0\cdot\left(-1\right)+2\right|}{\sqrt{\left(m^2+1\right)^2+1}}=\dfrac{2}{\sqrt{\left(m^2+1\right)^2+1}}\)
\(\sqrt{\left(m^2+1\right)^2+1}>=\sqrt{1+1}=\sqrt{2}\)
=>\(d\left(O;\left(d\right)\right)=\dfrac{2}{\sqrt{\left(m^2+1\right)^2+1}}< =\sqrt{2}\forall m\)
Dấu '=' xảy ra khi m=0