Bài tập: Cho đoạn thẳng BC cố định. Trên nửa mặt phẳng bờ BC lấy điểm A bất kỳ không thuộc BC. Dựng các tam giác ABD và tam giác ACE vuông cân tại B và C ra phía ngoài tam giác ABC. I, H, K lần lượt là hình chiếu cùa D, A, E trên đường thẳng BC.
a) CMR: DI = BH; EK = CH.
b) CMR: đường thẳng DE luôn đi qua một điểm cố định khi A thay đổi.
a) Xét tam giác DBI và tam giác BAH có:
\(\widehat{DIB}=\widehat{BHA}=90^o\)
BD = AB (Tam giác ABD vuông cân tại B)
\(\widehat{DBI}=\widehat{BAH}\) (Cùng phụ với góc ABH)
Vậy nên \(\Delta DBI=\Delta BAH\)(Cạnh huyền góc nhọn)
\(\Rightarrow DI=BH.\)
Tương tự ta chứng minh được EK = CH.
b) Gọi J là trung điểm DE. Do DI và EK cùng vuông góc bới BC nên chúng song song nhau.
Từ J kẻ, JM // DI // EK. Khi đó \(JM\perp BC.\)
Xét hình thang DIKE ta thấy ngay JM chính là đường trung bình của hình thang. Vậy M là trung điểm IK.
Lại có theo câu a, \(\Delta DBI=\Delta BAH\Rightarrow IB=AH\), tương tự KC = AH.
Vậy thì MB = MC hay JM là đường trung tuyến tam giác JBC.
Vậy thì \(JM=\frac{DI+EK}{2}=\frac{BH+CH}{2}=\frac{BC}{2}\)
Xét tam giác JBC có đường trung tuyến bằng một nửa cạnh huyền nên nó là tam giác vuông. Lại có JM đồng thời là đường cao nên tam giác JBC vuông cân tại J. Do BC cố định nên J cố định.
Vậy DE luôn đi qua một điểm cố đỉnh, là đỉnh J nằm cùng phía A so với BC và thỏa mãn tam giác JBC vuông cân tại J.