K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

1 tháng 2 2017

vẽ hình dùm mk nha bạn

1 tháng 2 2017

Nhưng mik ko bít lm thì mí hỏi chớ lm sao mà mik bít vẽ hình

7 tháng 3 2020

1, Vì △ABC cân tại A => AB = AC và ^ABC = ^ACB

Mà ^ACB = ^ECN (2 góc đối đỉnh)

=> ^ABC = ^ECN

Xét △DBM vuông tại D và △ECN vuông tại E

Có: BD = EC (gt)

  ^DBM = ^ECN (cmt)

=> △DBM = △ECN (cgv-gnk)

=> DM = EN (2 cạnh tương ứng)

2, Vì MD ⊥ BC (gt) ; NE ⊥ BC (gt)

=> MD // NE (từ vuông góc đến song song)

Xét △DMI vuông tại D và △ENI vuông tại E

Có: DM = EN (cmt)

    ^DMI = ^ENI (MD // NE)

=> △DMI = △ENI (cgv-gnk)

=> IM = IN (2 cạnh tương ứng)

Và I nằm giữa M, N

=> I là trung điểm MN

Xét △DMI vuông tại D => MI > DI (quan hệ cạnh huyền và cạnh góc vuông)

Xét △IEN vuông tại E => IN > IE (quan hệ cạnh huyền và cạnh góc vuông)   => IN > IC + CE   => IN > IC + BD   (CE = BD)

Ta có: MI + IN > DI + IC + BD    => MN > BC (đpcm)

3, Gọi AH là đường cao của △ABC

Gọi O là giao điểm của đường cao AH và đường vuông góc với MN tại I

Xét △ABH và △ACH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △ABH = △ACH (ch-cgv)

=> ^BAH = ^CAH (2 góc tương ứng)

Xét △ABO và △ACO

Có: AB = AC 

  ^BAO = ^CAO (cmt)

    AO là cạnh chung

=> △ABO = △ACO (c.g.c)

=> ^ABO = ^ACO (2 góc tương ứng) và OB = OC (2 cạnh tương ứng)

Xét △MIO vuông tại I và △NIO vuông tại I

Có: OI là cạnh chung

       IM = IN (cmt)

=> △MIO = △NIO (cgv)

=> OM = ON (2 cạnh tương ứng)

Vì △MDB = △NEC (cmt) => MB = NC (2 cạnh tương ứng)

Xét △MBO và △NCO

Có: MB = NC (cmt)

       OB = OC (cmt)

       OM = ON (cmt)

=> △MBO = △NCO (c.c.c)

=> ^MBO = ^NCO (2 góc tương ứng)

Mà ^ABO = ^ACO (cmt)

=> ^ACO = ^NCO 

Mà ^ACO + ^NCO = 180o (2 góc kề bù)

=> ^ACO : ^NCO = 180o : 2 = 90o  

=> AC ⊥ OC

Ta thấy A, H, C cố định => O cố định (Là giao điểm của đường thẳng vuông góc với AC tại C và AH)

Vậy đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thuộc BC.

a) Xét ΔDMIΔDMI và ΔENIΔENI ta có:

Dˆ=Eˆ=90oD^=E^=90o

MD=NE

MIDˆ=NIEˆMID^=NIE^(đối đỉnh)

Do đó ΔDMIΔDMI=ΔENIΔENI(cgv-gn)

Vậy MI=NI(hai cạnh tương ứng)

đpcm

b) Từ B và C kẻ các đường thẳng lần lượt vuông góc với AB và AC cắt nhau tại J.

Ta có: ΔABJ=ΔACJΔABJ=ΔACJ(g-c-g) nên: JB=JC(hai cạnh tương ứng)

Nên J thuộc AL đường trung trực ứng với BC

Mặt khác: từ ΔDMB=ΔENCΔDMB=ΔENC(câu a)

Ta có: BM=CN

BJ=CJ(cmt)

MBJˆ=NCJˆ=90oMBJ^=NCJ^=90o

Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ(c-g-c)

MJ=NJ hay đường trung trực của MN luôn đi qua điểm J cố định

28 tháng 1 2020

Tham khảo nhé :))