K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

17 tháng 12 2023

a,  7\(x\).(2\(x\) + 10) = 0

        \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\){-5; 0}

          

         

17 tháng 12 2023

b, - 9\(x\) : (2\(x\) - 10) = 0

      - 9\(x\) = 0

           \(x\) = 0

c, (4 - \(x\)).(\(x\) + 3) = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

d, (\(x\) + 2023).(\(x\) - 2024) = 0

    \(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2023; 2024}

22 tháng 8 2023

a) \(\left(x-2024\right)^{2023}=1\)

\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)

\(\Rightarrow x-2024=1\)

\(\Rightarrow x=2025\)

b) \(\left(2x-1\right)^5=32\)

\(\Rightarrow\left(2x-1\right)^5=2^5\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

c) \(5< 2^x< 100\)

\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)

\(\Rightarrow2< x< 7\)

 

22 tháng 8 2023

b , x = 3/2 a và b mình ko biết

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

26 tháng 3 2023

\(a,\dfrac{6}{11}+6+\dfrac{5}{7}=\dfrac{42+462+55}{77}=\dfrac{559}{77}\)

\(b,\dfrac{9}{8}\times\dfrac{3}{12}:\dfrac{5}{9}=\dfrac{9}{8}\times\dfrac{3}{12}\times\dfrac{9}{5}=\dfrac{243}{480}=\dfrac{81}{160}\)

\(c,\dfrac{8}{7}:4+2=\dfrac{8}{7}\times\dfrac{1}{4}+2=\dfrac{8}{28}+2=\dfrac{2}{7}+2=\dfrac{16}{7}\)

\(d,\dfrac{3}{5}+4:\dfrac{6}{4}=\dfrac{3}{5}+4\times\dfrac{4}{6}=\dfrac{3}{5}+\dfrac{8}{3}=\dfrac{49}{15}\)

26 tháng 3 2023

ô hoooho bắt lỗi dc câu d nhee, sai đề ròi :)

17 tháng 12 2023

a, 7\(x\).(2\(x\) + 10) =0

    \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\) {-5; 0}

 

17 tháng 12 2023

b, -9\(x\) : (2\(x\) - 10) = 0

    9\(x\)                   = 0 

     \(x\)                    = 0 

c, (4 - \(x\)).(\(x\) + 3)  = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

16 tháng 7 2023

\(C=16x^2-8x+2024\)

\(\Rightarrow C=16x^2-8x+1+2023\)

\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)

\(\Rightarrow Min\left(C\right)=2023\)

\(D=-25x^2+50x-2023\)

\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)

\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(D\right)=1998\)

\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)

\(\Rightarrow Max\left(B\right)=200\)

\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)

\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)

\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)

\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)

\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)

\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)

\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)

\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)

\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)

\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)

\(\Rightarrow Max\left(F\right)=48\)

29 tháng 6 2023

a

ĐK: \(x\ne5\)

\(\dfrac{x-5}{3}=\dfrac{-12}{5-x}\\ \Leftrightarrow\dfrac{x-5}{3}=\dfrac{12}{x-5}\\ \Leftrightarrow\left(x-5\right)^2=12.3=36\\ \Leftrightarrow\left\{{}\begin{matrix}x-5=6\\x-5=-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=11\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

b

ĐK: \(x\ne0;x\ne-1\)

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+....+\dfrac{2}{x\left(x+1\right)}=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{x}.\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2023}{2024}\\ \Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2023}{4048}\\ \Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2023}{4048}=\dfrac{1}{4048}\\ \Leftrightarrow4048=x+1\\ \Leftrightarrow x=4047\left(tm\right)\)

 

a: =>(x-5)/3=12/(x-5)

=>(x-5)^2=36

=>x-5=6 hoặc x-5=-6

=>x=11 hoặc x=-1

b: =>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2023}{2024}\)

=>1/2-1/3+1/3-1/4+...+1/x-1/x+1=2023/4048

=>1/2-1/x+1=2023/4048

=>1/(x+1)=1/4048

=>x+1=4048

=>x=4047