Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
def kiem_tra_nguyen_to(n):
if n < 2:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
def kiem_tra_nguyen_to_cung_nhau(m, n):
if kiem_tra_nguyen_to(m) and kiem_tra_nguyen_to(n):
return True
return False
M = int(input("Nhập số M: "))
N = int(input("Nhập số N: "))
if kiem_tra_nguyen_to_cung_nhau(M, N):
print("Hai số", M, "và", N, "là hai số nguyên tố cùng nhau.")
else:
print("Hai số", M, "và", N, "không phải là hai số nguyên tố cùng nhau.")
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
DO P LÀ SỐ NGUYÊN TỐ :
(+) XÉT P=2 => P+2=2+2=4 VÀ P+10=2+10=12 (ĐỀU LÀ HỢP SỐ )( LOẠI)
(+) XÉT P=3 => P+2=3+2=5 VÀ P+10 = 3+10 13 ( ĐỀU LÀ SỐ NGUYÊN TỐ ) ( CHỌN)
(+) NẾU P>3 => P KHÔNG CHIA HẾT CHO 3 => P CÓ DẠNG : 3K+1 HOẶC 3K+2
(+) XÉT P=3K+1 => P+2= 3K+1+2 = 3K+3 CHIA HẾT CHO 3 VÀ P+2>3 => P+2 LÀ HỢP SỐ (LOẠI)
(+) XÉT P=3K+2 => P+10 = 3K+2+10 =3K+12 CHIA HẾT CHO 3 VÀ P+10> 3 => P+10 LÀ HỢP SỐ (LOẠI)
VẬY P=3
câu 1:
+nếu \(p=2\Rightarrow p+10=12;p+14=16\)không phải số NT => loại
+nếu \(p=3\Rightarrow p+10=13;p+14=17\)là số NT => thỏa mãn
+ nếu \(p>3\), vì p là số NT nên p có dạng \(3k+1;3k+2\)
- với \(p=3k+1\Rightarrow p+14=3k+15⋮3\Rightarrow\)không phải số NT => loại
- với \(p=3k+2\Rightarrow p+10=3k+12⋮3\Rightarrow\)không phải số NT => loại
vậy p=3
TH1: p=3
\(p^2+2=3^2+2=11;p^3+2=3^3+2=29\)
=>Nhận
TH2: p=3k+1
\(p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2\)
\(=9k^2+6k+3=3\left(3k^2+2k+1\right)⋮3\)
=>Loại
TH3: p=3k+2
\(p^2+2=\left(3k+2\right)^2+2=9k^2+12k+4+2\)
\(=9k^2+12k+6=3\left(3k^2+4k+2\right)⋮3\)
=>Loại