Phân tích các biểu thức sau thành thừa số:
a) a^3 +4a^2 -29a+24
b) (a+b+c)^3 -a^3 -b^3-c^3
c) a^3 +b^3 +c^3 -3abc
d) x^5 +x -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left[\left(c-b\right)-\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-b-c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\left(1\right)\)
Đặt \(x^2+8x+11=y\)Thay vào (1) ta được
\(\left(y-4\right)\left(y+4\right)+15\)
\(=y^2-16+15\)
\(=y^2-1\)
\(=\left(y-1\right)\left(y+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+11\right)\)
a: \(=\dfrac{-x^5y^5z^{10}}{x^4y^2z^6}=-xy^3z^4=1^3\cdot\left(-2\right)^4=16\)
b: \(=\dfrac{-3}{4}:\dfrac{-3}{2}\cdot\left(a^5:a^2\right)\cdot\left(b^3:b^2\right)\cdot\left(c^2:c\right)=\dfrac{1}{2}a^3bc=\dfrac{1}{2}\cdot\left(-2\right)^3\cdot3\cdot\dfrac{1}{2}=\dfrac{1}{4}\cdot\left(-8\right)\cdot3=-2\cdot3=-6\)
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)
\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)
\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) Theo trên ta có
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)