Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)
\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)
\(=\left(x^3-x^2+3x\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)
Hay đa thức trên có thể phân tích thành:
\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)
Dựa vào đó em tự tách cho phù hợp
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
1/ab(a+b)+bc(b+c)+ca(c+a)+2abc
= a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc
= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)
=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)
=b^2(a+c) + b(a+c)^2 + ca(c+a)
=(c+a)[b^2 + b(a+c) + ca]
=(c+a)[b^2 + ab + bc + ca]
=(c+a)[b(b+a) + c(b+a)]
=(c+a)(b+c)(b+a)
2/VP=-(x-4)
pt trở thành \(\sqrt[3]{16-x^3}=-\left(x-4\right)\)
<=>x=2
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
a) phương trình \(x^3-3x^2+1\) có 3 nghiệm thực phân biệt là a,b,c(đề bài). Áp dụng Định lí Vi-ét cho đa thức bậc 3 ta có:\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ac=0\\a.b.c=-1\end{matrix}\right.\)
ta có
a+b+c=3
<=>\(\left(a+b+c\right)^2=9\)
<=>\(a^2+b^2+c^2+2ab+2bc+2ac=9\)
<=>\(a^2+b^2+c^2=9\)
<=>\(\left(a^2+b^2+c^2\right)^2=81\)
<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=81\)(1)
ta có ab+bc+ac=0
<=>\(\left(ab+bc+ac\right)^2=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2-2.1.3=0\)
<=>\(a^2b^2+b^2c^2+a^2c^2=6\)(2)
Thay (2) vào (1) ta có \(a^4+b^4+c^4+2.6=81\)
<=>\(a^4+b^4+c^4=69\)
b) \(\dfrac{a+1}{\left(b+c\right)\left(1-a\right)+1}=\dfrac{a+1}{\left(3-a\right)\left(1-a\right)+1}=\dfrac{a+1}{3+a^2-4a+1}=\dfrac{a+1}{a^2-4a+4}=\dfrac{a+1}{\left(a-2\right)^2}\)
cmtt =>\(B=\dfrac{a+1}{\left(a-2\right)^2}+\dfrac{b+1}{\left(b-2\right)^2}+\dfrac{c+1}{\left(c-2\right)^2}\)=\(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}+3\left[\dfrac{1}{\left(a-2\right)^2}+\dfrac{1}{\left(b-2\right)^2}+\dfrac{1}{\left(c-2\right)^2}\right]\)=\(\dfrac{3\left[\left(a-2\right)\left(b-2\right)\right]^2+3\left[\left(b-2\right)\left(c-a\right)\right]^2+3\left[\left(c-2\right)\left(a-2\right)\right]^2}{\left[\left(a-2\right)\left(b-2\right)\left(c-2\right)\right]^2}\)
đặt t=(a-2)(b-2);u=(b-2)(c-2);v=(c-2)(a-2) =>t+u+v=0
B thành \(\dfrac{3\left(t^2+u^2+v^2\right)}{t.u.v}\) bạn biến đổi để xuất hiện t+u+v
=>B=\(\dfrac{3\left(t+u+v\right)^2-6\left(t.u+u.v+t.v\right)}{t.u.v}=\dfrac{-6.\left(a-2\right)\left(b-2\right)\left(c-2\right)\left(a-2+b-2+c-2\right)}{t.u.v}=\dfrac{18}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)
(a-2)(b-2)(c-2)= abc-2(ab+bc+ac)+4(a+b+c)-8=12-9=3
Vậy B=3
\(=a^3-3a^2+7a^2-21a-\left(8a-24\right)\)hay
\(=a^2\left(a-3\right)+8a\left(a-3\right)-8\left(a-3\right)\)
\(=\left(a-3\right)\left(a^2+8a-8\right)\)
CHÚC BẠN HỌC TỐT...
\(a^3+4a^2-29a+24\)
\(=\left(a^3-3a^2\right)+\left(7a^2-21a\right)+\left(-8a+24\right)\)
\(=\left(a-3\right)\left(a^2+7a-8\right)\)
\(=\left(a-3\right)\left[\left(a^2-a\right)+\left(8a-8\right)\right]\)
\(=\left(a-3\right)\left(a-1\right)\left(a+8\right)\)
a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)
\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)
\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)
\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) Theo trên ta có
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)