Tìm x
\(\dfrac{x}{2008}\)-\(\dfrac{01}{10}\) -\(\dfrac{1}{15}\) - \(\dfrac{1}{21}\) -...-\(\dfrac{1}{120}\) =\(\dfrac{5}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-\dfrac{2}{20}-\dfrac{2}{30}-\dfrac{2}{42}-...-\dfrac{2}{240}=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\)
\(\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\)
\(\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\)
\(\dfrac{x}{2008}=1=\dfrac{2008}{2008}\)
\(\Rightarrow x=2008\)
b,\(\dfrac{1}{3.5}+\dfrac{1}{5.7}\)\(+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)
\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)
\(\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+....+\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+1}\right)-\dfrac{1}{2x+3}\right].\dfrac{1}{2}=\dfrac{15}{93}\)
\(\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{15}{93}:\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}\)
\(\dfrac{1}{2x+3}=\dfrac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=93-3=90\)
\(\Rightarrow x=90:2=45\)
a) \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-\left(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\) \(\Rightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\\ \Rightarrow\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\\ \Rightarrow\dfrac{x}{2008}=1\\ \Rightarrow x=2008\)
b) \(\dfrac{7}{x}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+\dfrac{4}{13.17}+...+\dfrac{4}{41.45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{29}{45}\)
\(\Rightarrow\dfrac{7}{x}+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}+\dfrac{8}{45}=\dfrac{29}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{29}{45}-\dfrac{8}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{21}{45}\\ \Rightarrow\dfrac{7}{x}=\dfrac{7}{15}\\ \Rightarrow x=15\)
c) \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)
\(\Rightarrow2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=\dfrac{15}{93}.2\)
\(\Rightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\\ \Rightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\\ \Rightarrow\dfrac{2x}{3\left(2x+3\right)}=\dfrac{10}{31}\\ \Rightarrow\dfrac{10.3\left(2x+3\right)}{31}=2x\\ \Rightarrow\dfrac{30\left(2x+3\right)}{31}=2x\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{31}:2\\ \Rightarrow x=\dfrac{30\left(2x+3\right)}{62}\\ \Rightarrow x=\dfrac{15\left(2x+3\right)}{31}\\\Rightarrow\dfrac{15\left(2x+3\right)}{x}=31\\ \Rightarrow\dfrac{30x+45}{x}=31\\ \Rightarrow30+\dfrac{45}{x}=31\\ \Rightarrow \dfrac{45}{x}=1\\ \Rightarrow x=45\)
a/ \(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-............-\dfrac{1}{120}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{1}{10}+\dfrac{1}{15}+.......+\dfrac{1}{120}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+.......+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+.......+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}-\dfrac{3}{16}=\dfrac{5}{8}\)
\(\Leftrightarrow\dfrac{x}{2008}=\dfrac{13}{16}\)
\(\Leftrightarrow x=1631,5\)
Vậy ..................
\(\dfrac{15}{14}\): \(\dfrac{10}{21}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{15}{14}\) \(\times\) \(\dfrac{21}{10}\) \(\times\) \(\dfrac{1}{5}\) = \(\dfrac{5\times3\times7\times3}{7\times2\times10\times5}\) = \(\dfrac{9}{20}\)
5 \(\times\) \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = 1 + \(\dfrac{1}{5}\) = \(\dfrac{6}{5}\)
7 : \(\dfrac{1}{5}\) - \(\dfrac{1}{5}\) = 35 - \(\dfrac{1}{5}\) = \(\dfrac{174}{5}\)
6 + \(\dfrac{1}{5}\): 2 = 6 + \(\dfrac{1}{10}\) = \(\dfrac{61}{10}\)
8 - \(\dfrac{1}{5}\) \(\times\) 7 = 8 - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)
\(\dfrac{15}{14}\) : \(\dfrac{10}{21}\) x \(\dfrac{1}{5}\) = \(\dfrac{15}{14}\) x \(\dfrac{21}{10}\) x \(\dfrac{1}{5}\) = \(\dfrac{9}{4}\) x \(\dfrac{1}{5}\) = \(\dfrac{9}{20}\)
5 x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = \(\dfrac{5}{1}\) x \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) = 1 x \(\dfrac{1}{5}\) = \(\dfrac{1}{5}\)
7 : \(\dfrac{1}{5}-\dfrac{1}{5}\) = \(\dfrac{7}{1}\) x \(\dfrac{5}{1}-\dfrac{1}{5}\) = \(\dfrac{35}{1}\) - \(\dfrac{1}{5}\) = \(\dfrac{175}{5}\) - \(\dfrac{1}{5}\) = \(\dfrac{174}{5}\)
6 + \(\dfrac{1}{5}\) : 2 = \(\dfrac{6}{1}\) + \(\dfrac{1}{5}\) x \(\dfrac{1}{2}\) = \(\dfrac{6}{1}+\dfrac{1}{10}\) = \(\dfrac{60}{10}\) + \(\dfrac{1}{10}\) = \(\dfrac{61}{10}\)
8 - \(\dfrac{1}{5}\) x 7 = \(\dfrac{8}{1}\) - \(\dfrac{1}{5}\) x \(\dfrac{7}{1}\) = \(\dfrac{8}{1}-\dfrac{7}{5}\) = \(\dfrac{40}{5}\) - \(\dfrac{7}{5}\) = \(\dfrac{33}{5}\)
Sai Báo Lại Mình Nha!
Giải:
a)-3/10-(-1/5)+x)=-3/2
-1/5+x =-3/10-(-3/2)
-1/5+x =6/5
x =6/5-(-1/5)
x =7/5
b)-(-x+3/4)-12/8.(-32/15)=-(-1/2)
x-3/4+16/5 =1/2
x-3/4 =1/2-16/5
x =-27/10
x =-27/10+3/4
x =-39/20
c)x-3/x+5=4/3
=>(x-3).3=4.(x+5)
3x-9 =4x+20
3x-4x =20+9
-1x =29
x =-29
Câu b cậu nên tính lại cho kĩ nhé, ấn máy tính dễ nhầm lắm đấy!
Mk phải ấn: -(39/20+3/4)-12/8.-32/15=1/2
Vì x là số âm mà đằng trước x là dấu ''-'' nên -(-39/20)=39/20 ; -(-1/2)=1/2
Chúc bạn học tốt!
a, \(x\cdot\dfrac{-5}{8}=\dfrac{15}{32}\)
\(x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(x=\dfrac{-3}{4}\)
b, \(\dfrac{3}{10}:x=\dfrac{-9}{20}\)
\(x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(x=-\dfrac{2}{3}\)
c, \(\dfrac{-1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\dfrac{-1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\dfrac{-1}{4}x=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}:\dfrac{-1}{4}\)
\(x=\dfrac{1}{5}\)
d, \(\dfrac{-7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}\cdot\dfrac{-5}{12}\)
\(\dfrac{-7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{-7}{8}\)
\(\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(x=\dfrac{16}{15}\)
#YVA6
\(a,x.\dfrac{-5}{8}=\dfrac{15}{32}\)
\(\Leftrightarrow x=\dfrac{15}{32}:\dfrac{-5}{8}\)
\(\Leftrightarrow x=\dfrac{15}{32}.\dfrac{-8}{5}\)
\(\Leftrightarrow x=-\dfrac{3}{4}\)
\(b,\dfrac{3}{10}:x=-\dfrac{9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}:\dfrac{-9}{20}\)
\(\Leftrightarrow x=\dfrac{3}{10}.\dfrac{-20}{9}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
\(c,-\dfrac{1}{4}x+\dfrac{4}{5}=\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{4}x=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow-\dfrac{1}{4}x=-\dfrac{1}{20}\)
\(\Leftrightarrow x=-\dfrac{1}{20}\times\left(-4\right)\)
\(\Leftrightarrow x=\dfrac{1}{5}\)
\(d,-\dfrac{7}{8}+\dfrac{2}{3}:x=\dfrac{3}{5}.\dfrac{-5}{12}\)
\(\Leftrightarrow-\dfrac{7}{8}+\dfrac{2}{3}:x=-\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{3}:x=-\dfrac{1}{4}+\dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{2}{3}:x=\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{2}{3}:\dfrac{5}{8}\)
\(\Leftrightarrow x=\dfrac{16}{15}\)
a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\).
Nếu \(n-3=1\Rightarrow n=4\); \(n-3=-1\Rightarrow n=2\); \(n-3=2\Rightarrow n=5\); \(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)
\(A=\dfrac{n+4}{n+1}\) làm tương tự.
b) Dễ thấy các số ở mẫu có thể viết dưới dạng:
\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)
\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)
\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)
...
\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)
Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=\dfrac{3}{8}\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
\(\dfrac{x-2023}{6}+\dfrac{x-2023}{10}+\dfrac{x-2023}{15}+\dfrac{x-2023}{21}=\dfrac{8}{21}\)
\(\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\left(x-2023\right).\dfrac{8}{21}=\dfrac{8}{21}\)
\(x-2023=1\)
\(x=2024\)
Vậy..............
\(...\Rightarrow\left(x-2023\right)\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right)\left(\dfrac{35+21+14+1}{210}\right)=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}\)
\(\Rightarrow\left(x-2023\right).\dfrac{71}{210}=\dfrac{8}{21}.\dfrac{210}{71}=\dfrac{80}{71}\)
\(\Rightarrow x-2023=\dfrac{80}{71}\Rightarrow x=\dfrac{80}{71}+2023=\dfrac{143713}{71}\)
\(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-...-\dfrac{1}{120}=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-2\left(\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{240}\right)=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-2\cdot\dfrac{4-1}{16}=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\)
=>\(\dfrac{x}{2008}=1\)
=>x=2008