tìm số dư trong phép chia 2006^2024 cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4
a, Tổng các chữ số của A là (2+6)*2007 = 8*2007 = X (tự tính đi nhé ^^)
=> Số dư của A khi chia cho 9 = Số dư của X khi chia cho 9
b, A chia 5 dư 1; A chia 3 có số dư bằng X chia 3 = Y (cũng tự tính luôn nhé ^^^^)
=> Số dư của A khi chia cho 15 = 1*Y
*Đây chỉ là hướng làm thôi nhé, còn suy luận thế nào thì tự nghĩ đi :v
Học tốt nha ^^
concặc
Ta có \(2006^{2024}=\left(7.286+4\right)^{2024}\) \(=7A+4^{2024}\). Do đó ta chỉ cần tìm số dư của \(4^{2024}\) khi chia cho 7.
Để ý rằng: \(4^0\equiv1\left[7\right]\); \(4^1\equiv4\left[7\right]\); \(4^2\equiv2\left[7\right]\); \(4^3\equiv1\left[7\right]\); \(4^4\equiv4\left[7\right]\); \(4^5\equiv2\left[7\right]\)
Do đó ta nảy sinh dự đoán rằng \(4^{3k+2}\equiv2\left[7\right]\left(k\inℕ\right)\). Ta sẽ chứng minh điều này bằng phương pháp quy nạp,
Thật vậy, với \(k=0\) thì khẳng định đúng (theo như trên)
Giả sử khẳng định đúng đến \(k=l\ge0\), khi đó \(4^{3l+2}\equiv2\left[7\right]\). Ta cần chứng minh khẳng định đúng với \(k=l+1\), tức là cm \(4^{3\left(l+1\right)+2}\equiv2\left[7\right]\)
Thật vậy, ta có \(4^{3\left(l+1\right)+2}\equiv4^{3l+3+2}\equiv64.4^{3l+2}\equiv1.2\equiv2\left[7\right]\)
Vậy khẳng định đúng với \(k=l+1\Rightarrow4^{3k+2}\equiv2\left[7\right]\)
Vì vậy \(4^{2024}=4^{2022+2}=4^{3.674+2}\equiv2\left[7\right]\)
Vậy số dư của phép chia \(2006^{2024}\) cho 7 là 2.