K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

Ta có: \(HC-HB=9\Rightarrow HC=9+HB\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC=HB\left(HB+9\right)\Rightarrow HB^2+9HB=36\)

\(\Rightarrow HB^2+9HB-36=0\Rightarrow\left(HB-3\right)\left(HB+12\right)=0\)

mà \(HB>0\Rightarrow HB=3\left(cm\right)\Rightarrow HC=3+9=12\left(cm\right)\)

19 tháng 7 2021

cam on ban nha :)

 

11 tháng 10 2018

Ta có BC=HB+HC=3,6+6,4=10(cm)

Xét △ABC vuông tại A đường cao AH:

AB2=BC.HB=10.3,6=36⇒AB=6(cm)

AC2=BC.HC=10.6,4=64⇒AC=8(cm)

\(AC.AB=BC.AH\Rightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

22 tháng 3 2018

a) Ta có:   \(\widehat{HAB}+\widehat{HBA}=90^0\)

                 \(\widehat{HAB}+\widehat{HAC}=90^0\)

suy ra:   \(\widehat{HBA}=\widehat{HAC}\)

Xét 2 tam giác vuông:  \(\Delta HBA\) và  \(\Delta HAC\) có:

           \(\widehat{BHA}=\widehat{AHC}=90^0\)

          \(\widehat{HBA}=\widehat{HAC}\)   (CMT)

suy ra:   \(\Delta HBA~\Delta HAC\)

b)   \(BC=BH+HC=25+36=61\)cm

 \(\Delta HBA~\Delta HAC\) \(\Rightarrow\)\(\frac{HB}{HA}=\frac{AB}{AC}\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{5}{6}\)\(\Leftrightarrow\)\(\frac{AB}{5}=\frac{AC}{6}\)\(\Leftrightarrow\)\(\frac{AB^2}{25}=\frac{AC^2}{36}=\frac{AB^2+AC^2}{25+36}=\frac{BC^2}{61}=\frac{61^2}{61}=61\)

suy ra:    \(\frac{AB^2}{25}=61\) \(\Leftrightarrow\) \(AB=\sqrt{1525}\) cm

            \(\frac{AC^2}{36}=61\)\(\Leftrightarrow\) \(AC=\sqrt{2196}\)cm

p/s: tham khảo

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: \(BC=HB+HC=61\left(cm\right)\)

\(AB=\sqrt{25\cdot61}=5\sqrt{61}\left(cm\right)\)

\(AC=\sqrt{36\cdot61}=6\sqrt{61}\left(cm\right)\)

25 tháng 9 2018

Theo điều kiện bài ra thì tam giác trên không thể nào là tam giác vuông được nha bạn! Cảm phiền bạn xem lại đề, ít nhất đoạn BC phải là 10cm thì mới vuông nổi.

Sửa đề: BC=10cm

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A 

b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

CH=BC-BH=6,4cm