K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)

a) Do AH vuông góc với BC nên:

Góc AHB= Góc AHC=90 độ

Ta có: Góc BAH= 90 độ- góc B(1)

Góc CAH=90 độ- góc C(2)

Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)

Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH

Xét tam giác ABH và tam giác ACH, có:

Góc BAH= Góc CAH( CM trên)

Chung AH

Góc AHB=Góc AHC( Đều bằng 90 độ)

=> Tam giác ABH=Tam giác ACH( G-c-g)

Khi đó: HB=HC( Cặp cạnh tương ứng)

-------> ĐPCM

29 tháng 12 2016

ĐPCM la gi vay

ve hinh gium mk luon nha

26 tháng 1 2016

giup di dang can gap mai nop bai rui

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

DO đó; ΔABD cân tại A

b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)

\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)

=>góc MCB=góc ACB

hay CB là phân giác của góc AMC

c: Xét ΔCAQ có

CH là đường phân giác

CH là đường cao

Do đó: ΔCAQ cân tại C

30 tháng 1 2019

tu ve hinh : 

a, AC = AB => tamgiac ABC can tai A (dn)

=> goc ABC  = goc ACB (tc) 

xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)

=>  tam giac ABH = tamgiac ACH (ch - gn)            (1)

b, tamgiac AHB vuong tai H do AH | BC (gt)

=> AB2 = AH2 + BH2 

 (1) =>  BH  = HC ma BC = 6 (gt)=> BH = 3

BA = 5 (gt)

=> AH = 52 - 32

=> AH = 16

=> AH = 4 do AH  > 0

c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)

goc ABC = goc ACB (cmt) va BH = HC (cmt)

=>  tamgiac BMH = tamgiac NCH (ch - gn) 

=> MH = HN (dn)

=> tamgiac MNH can tai H (dn)

d, cm theo truong hop ch - gn di, moi tay qa

1 tháng 2 2019

                       Giải

( Bạn tự vẽ hình nhé )

a, \(AB=AC\)  \(\Rightarrow\)\(\Delta ABC\)  cân tại A 

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) 

Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\)  do \(AH\perp BC\)

\(\Delta ABH=\Delta ACH\)              (1) [ đpcm]

b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)

 \(\Rightarrow AB^2=AH^2+BH^2\)

Từ  (1) suy ra  BH  = HC mà BC = 6 nên BH = 3

\(\Rightarrow\)BA = 5 

\(\Rightarrow AH^2=5^2-3^2\)

\(\Rightarrow AH^2=25-9\)

\(\Rightarrow AH^2=16\)

\(\Rightarrow AH=\sqrt{16}\)

\(\Rightarrow AH=4cm\)

\(\Rightarrow\) AH = 4cm do AH  > 0

c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)

 \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)

\(\Rightarrow\Delta BHM=\Delta NCH\)  

\(\Rightarrow MH=HN\)

\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)

d, ...

29 tháng 4 2016

sai đề

1 tháng 5 2016

sx sai ban