cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
cmr: \(a+b+c=abc\)
giúp mk vs đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mk vs mn ơi. Mk cx chưa cần vội lm trước 22h nha. Yêu mn nhiều lm
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
So ez
....
Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)
Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)
Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=1\)
\(\Leftrightarrow2+2.\frac{a+b+c}{abc}=1\Leftrightarrow\frac{a+b+c}{abc}=-\frac{1}{2}\Leftrightarrow2\left(a+b+c\right)=-abc\)
có chép nhầm đề không ý nhỉ?
ak hình như mk chép sai đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
bn có thể giúp mk đc ko Trà My