cho x>y và xy=1000 tìm giá trị nhỏ nhất của \(\frac{x^2+y^2}{x-y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
\(P=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{\left(x+y\right)^2}{2xy}\)
Ta có : \(\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}=4\) (áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\))
\(\frac{\left(x+y\right)^2}{2xy}\ge2\)(Suy ra từ \(\left(a+b\right)^2\ge4ab\))
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi x = y
Vậy MIN P = 6
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)