cho hình chóp S.MNPQ có MNPQ là hình bình hành tâm O K thuộc SP (K khác S, K khác B)
(SQN) giao (SMP)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn mp(SMP) có chứa MK
\(O\in MP\subset\left(SMP\right)\)
\(O\in NQ\subset\left(SNQ\right)\)
Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)
mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)
nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)
Gọi giao điểm của SO với MK là A
=>A là giao điểm của MK với mp(SNQ)
a: Gọi O là giao điểm của MP và NQ trong mp(MNPQ)
\(O\in MP\subset\left(SMP\right)\)
\(O\in NQ\subset\left(SNQ\right)\)
Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)
mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)
nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)
b: Chọn mp(SMN) có chứa AB
\(MN\subset\left(SMN\right);MN\subset\left(MNPQ\right)\)
=>\(\left(SMN\right)\cap\left(MNPQ\right)=MN\)
Trong mp(SMN), gọi K là giao điểm của MN với AB
=>K là giao điểm của AB với mp(MNPQ)
a: Xét (SAB) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: (SBA) giao (SCD)=xy, xy đi qua S và xy//AB//CD
b: Xét ΔSAC có
I,O lần lượt là trung điểm của AS,AC
=>IO là đường trung bình của ΔSAC
=>IO//SC
=>IK//SC
Ta có: IK//SC
SC\(\subset\)(SBC)
IK không nằm trong mp(SBC)
Do đó: IK//(SBC)
BP//KM
=>PK=BM
=>PK=AN
mà PK//AN
nên ANKP là hình bình hành
Lời giải:
Vì $ABCD$ là hình bình hành nên tâm $O$ là trung điểm $AC$
$\Rightarrow OK$ là đường trung bình của $SAC$ ứng với cạnh $SA$
$\Rightarrow OK\parallel SA$
Mà $SA\subset (SAB)$ nên $OK\parallel (SAB)$
a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)
Gọi Q là trung điểm SA
\(\Rightarrow PQ\) là đường trung bình tam giác SAB
\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)
\(\Rightarrow Q=SA\cap\left(MNP\right)\)
b. Do Q là trung điểm SA, M là trung điểm AD
\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)
Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)
Tương tự ta có \(NP||SC\) (đường trung bình) (1)
\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)
(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)
c. Đề bài không tồn tại điểm L
\(O\in QN\subset\left(SQN\right)\)
\(O\in MP\subset\left(SMP\right)\)
Do đó: \(O\in\left(SQN\right)\cap\left(SMP\right)\)
mà \(S\in\left(SQN\right)\cap\left(SMP\right)\)
nên \(\left(SQN\right)\cap\left(SMP\right)=SO\)