K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(O\in QN\subset\left(SQN\right)\)

\(O\in MP\subset\left(SMP\right)\)

Do đó: \(O\in\left(SQN\right)\cap\left(SMP\right)\)

mà \(S\in\left(SQN\right)\cap\left(SMP\right)\)

nên \(\left(SQN\right)\cap\left(SMP\right)=SO\)

Chọn mp(SMP) có chứa MK

\(O\in MP\subset\left(SMP\right)\)

\(O\in NQ\subset\left(SNQ\right)\)

Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)

mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)

nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)

Gọi giao điểm của SO với MK là A

=>A là giao điểm của MK với mp(SNQ)

a: Gọi O là giao điểm của MP và NQ trong mp(MNPQ)

\(O\in MP\subset\left(SMP\right)\)

\(O\in NQ\subset\left(SNQ\right)\)

Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)

mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)

nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)

b: Chọn mp(SMN) có chứa AB

\(MN\subset\left(SMN\right);MN\subset\left(MNPQ\right)\)

=>\(\left(SMN\right)\cap\left(MNPQ\right)=MN\)

Trong mp(SMN), gọi K là giao điểm của MN với AB

=>K là giao điểm của AB với mp(MNPQ)

11 tháng 12 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SBA) giao (SCD)=xy, xy đi qua S và xy//AB//CD

b: Xét ΔSAC có

I,O lần lượt là trung điểm của AS,AC

=>IO là đường trung bình của ΔSAC

=>IO//SC

=>IK//SC

Ta có: IK//SC

SC\(\subset\)(SBC)

IK không nằm trong mp(SBC)

Do đó: IK//(SBC)

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

Vì $ABCD$ là hình bình hành nên tâm $O$ là trung điểm $AC$

$\Rightarrow OK$ là đường trung bình của $SAC$ ứng với cạnh $SA$

$\Rightarrow OK\parallel SA$

Mà $SA\subset (SAB)$ nên $OK\parallel (SAB)$

NV
7 tháng 1 2022

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)

Gọi Q là trung điểm SA

\(\Rightarrow PQ\) là đường trung bình tam giác SAB

\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)

\(\Rightarrow Q=SA\cap\left(MNP\right)\)

b. Do Q là trung điểm SA, M là trung điểm AD

\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)

Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)

Tương tự ta có \(NP||SC\) (đường trung bình) (1)

\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)

(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)

c. Đề bài không tồn tại điểm L

NV
7 tháng 1 2022

undefined

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)