K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn mp(SMP) có chứa MK

\(O\in MP\subset\left(SMP\right)\)

\(O\in NQ\subset\left(SNQ\right)\)

Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)

mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)

nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)

Gọi giao điểm của SO với MK là A

=>A là giao điểm của MK với mp(SNQ)

\(O\in QN\subset\left(SQN\right)\)

\(O\in MP\subset\left(SMP\right)\)

Do đó: \(O\in\left(SQN\right)\cap\left(SMP\right)\)

mà \(S\in\left(SQN\right)\cap\left(SMP\right)\)

nên \(\left(SQN\right)\cap\left(SMP\right)=SO\)

a: Gọi O là giao điểm của MP và NQ trong mp(MNPQ)

\(O\in MP\subset\left(SMP\right)\)

\(O\in NQ\subset\left(SNQ\right)\)

Do đó: \(O\in\left(SMP\right)\cap\left(SNQ\right)\)

mà \(S\in\left(SMP\right)\cap\left(SNQ\right)\)

nên \(\left(SMP\right)\cap\left(SNQ\right)=SO\)

b: Chọn mp(SMN) có chứa AB

\(MN\subset\left(SMN\right);MN\subset\left(MNPQ\right)\)

=>\(\left(SMN\right)\cap\left(MNPQ\right)=MN\)

Trong mp(SMN), gọi K là giao điểm của MN với AB

=>K là giao điểm của AB với mp(MNPQ)

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)

a: BD giao AC tại O

S thuộc (SBD) giao (SAC)

=>(SBD) giao (SAC)=SO

Gọi giao của SO và KH là G

\(\left\{{}\begin{matrix}G\in KH\subset\left(KHC\right)\\G\in SO\subset\left(SAC\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}C\in\left(KHC\right)\\C\in\left(SAC\right)\end{matrix}\right.\)

=>(KHC) giao (SAC)=CG

b: Chọn mp (SAC) có chứa SA
(SAC) giao (KHC)=CG

=>I=SA giao CG

c: Chọn mp (ABCD) có chứa AB

(ABCD) cắt (KHC)=HC

=>E=AB giao HC

11 tháng 12 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SBA) giao (SCD)=xy, xy đi qua S và xy//AB//CD

b: Xét ΔSAC có

I,O lần lượt là trung điểm của AS,AC

=>IO là đường trung bình của ΔSAC

=>IO//SC

=>IK//SC

Ta có: IK//SC

SC\(\subset\)(SBC)

IK không nằm trong mp(SBC)

Do đó: IK//(SBC)

NV
7 tháng 1 2022

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)

Gọi Q là trung điểm SA

\(\Rightarrow PQ\) là đường trung bình tam giác SAB

\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)

\(\Rightarrow Q=SA\cap\left(MNP\right)\)

b. Do Q là trung điểm SA, M là trung điểm AD

\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)

Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)

Tương tự ta có \(NP||SC\) (đường trung bình) (1)

\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)

(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)

c. Đề bài không tồn tại điểm L

NV
7 tháng 1 2022

undefined

16 tháng 12 2021

a: Xét tứ giác MHKQ có 

MH//QK

MH=QK

Do đó: MHKQ là hình bình hành

mà MH=MQ

nên MHKQ là hình thoi