Phân tích đa thức thành nhân tử:
a4+a2-2
Mình cần gấp nha, ai nhanh mình k.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\left[\left(4b\right)^2+2\cdot4\cdot3\cdot ab+\left(3a\right)^2\right]\)
\(=-a^4b^4\cdot\left(3a+4b\right)^2\)
h) \(y\left(y-x\right)^3-x\left(x-y\right)^2+xy\left(x-y\right)=y\left(y-x\right)^3-x\left(y-x\right)^2-xy\left(y-x\right)=\left(y-x\right)\left[y\left(y-x\right)^2-x-xy\right]=\left(y-x\right)\left[y\left(y^2-2xy+x^2\right)-x-xy\right]=\left(y-x\right)\left(y^3-2xy^2+x^2y-x-xy\right)\)
i) \(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2=10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(a-2b\right)^2=\left(a-2b\right)^2\left(10x^2-x^2-2\right)=\left(a-2b\right)^2\left(9x^2-2\right)\)
\(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\\ =\left(x+3\right)\left(x^2-3x+9-4x\right)=\left(x+3\right)\left(x^2-7x+9\right)\)
\(x^3-4x^2-12x+27\)
\(=x^3+3x^2-7x^2-21x+9x+27\)
\(=x^2\left(x+3\right)-7x\left(x+3\right)+9\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
\(a^4+a^2+1\)
\(=a^4-a+a^2+a+1\)
\(=a\left(a^3-1\right)+\left(a^2+a+1\right)\)
\(=a\left(a-1\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)
\(=\left(a^2+a+1\right)\left[a\left(a-1\right)+1\right]\)
\(=\left(a^2+a+1\right)\left(a^2-a+1\right)\)
a4 + a2 +1 = a4 +2a2 + 1 - a2
= (a4 +2a2 + 1) - a2
= (a2 + 1)2 - a2
= (a2 + 1 - a)(a2 + 1 +a)
Bài khó quá
4x⁴+4x-3= (2x)²+2(2x)+1-4
=(2x+1)²-2²=(2x+1-2)(2x+1+2)
=(2x-1)(2x+3)
a, 4\(x^3\).y + \(\dfrac{1}{2}\)yz
=y.(4\(x^3\) + \(\dfrac{1}{2}\)z)
b, (a2 + b2 - 5)2 - 2.(ab + 2)2
= [a2 + b2 - 5 - \(\sqrt{2}\)(ab + 2) ].[ a2 + b2 - 5 + \(\sqrt{2}\)(ab +2)]
a) \(4x^3y+\dfrac{1}{2}yz=y\left(4x^3+\dfrac{1}{2}z\right)\)
b) \(\left(a^2+b^2-5\right)^2-2.\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[a^2+b^2+2ab-1\right]\left[a^2+b^2-2ab-9\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left[\left(a+b+1\right)\left(a+b-1\right)\right]\left[\left(a-b+3\right)\left(a-b-3\right)\right]\)
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
a) \(2x-72x^3=2x\left(1-36x^2\right)=2x\left(1-6x\right)\left(1+6x\right)\)
f) \(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
\(a^4+a^2-2\)
\(=a^4-a^3+a^3-a^2+2a^2-2a+2a-2\)
\(=a^3\left(a-1\right)+a^2\left(a-1\right)+2a\left(a-1\right)+2\left(a-1\right)\)
\(=\left(a-1\right)\left(a^3+a^2+2a+2\right)\)
\(=\left(a-1\right)\left[a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=\left(a-1\right)\left(a+1\right)\left(a^2+2\right)\)
=a^2-1+a^4-1
=a2-1+(a2-1)(a2+1)
=(a2-1)(a2+2)