C = 1^2 + 2^2 + .... + 20^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{20}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{19}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{20}}\right)\)
\(A=1-\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)
Chọn A
Đặt \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{20}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}}{2^{20}}-\frac{1}{2^{20}}\)
\(A=\frac{2^{20}-1}{2^{20}}\)
Vậy chọn câu a)
\(C=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)
\(=1+\dfrac{1}{2}2.3:2+\dfrac{1}{3}.3.4:2+...+\dfrac{1}{20}.20.21:2\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+...+\dfrac{21}{2}\)
\(=\dfrac{2+3+4+...+21}{2}\)
\(=\dfrac{230}{2}\)
\(=115\)
Tổng 20 số hạng đầu là:
\(u_1\cdot\dfrac{1-q^{20}}{1-q}=3\cdot\dfrac{1-2^{20}}{1-2}=3\cdot\dfrac{2^{20}-1}{2-1}=3\cdot\left(2^{20}-1\right)\)
=>Chọn C
Ta có C = \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\)
2C = 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\)
2C - C = ( 1 + \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{19}}\) ) - ( \(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}\) )
C = 1 - \(\dfrac{1}{2^{20}}=\dfrac{2^{20}-1}{2^{20}}\)
\(C=1^2+2^2+3^2+...+19^2+20^2\)
\(\Rightarrow C=\dfrac{20\left(20+1\right)\left(2.20+1\right)}{6}\)
\(\Rightarrow C=\dfrac{20.21.41}{6}=2870\)
C = 12 + 22 + 32+....+ 192 + 202 (mới đúng, em xem lại đề bài)