cho 3 đường thẳng (d) y = x+2 ; (d') y = x +1 ; (d'') y = (k+3)x-2
a) tìm k để (d);(d');(d'') đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: x+2y=3
Tọa độ giao là:
x-y=1 và x+2y=3
=>x=5/3 và y=2/3
Thay x=5/3 và y=2/3 vào (d), ta được"
5/3(m+2)-m^2=2/3
=>5/3m+10/3-m^2-2/3=0
=>-m^2+5/3m+8/3=0
=>-3m^2+5m+8=0
=>-3m^2+8m-3m+8=0
=>(3m-8)(-m-1)=0
=>m=-1 hoặc m=8/3
Xét phương trình hoành độ giao điểm của d và d’ ta có:
2 x – 1 = x – 3 ⇔ x = − 2 ⇔ y = − 5 ⇔ M ( − 2 ; − 5 )
Trước hết xét M có thuộc đường thẳng y = 3 x + 1 không?
Ta có 3 . x M + 1 = 3 . ( − 2 ) + 1 = − 5 = y M nên M thuộc đồ thị hàm số y = 3 x + 1
hay A đúng
Đáp án cần chọn là: A
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
Ta có: y=x-1
nên x-1=y
=>x-y=1
Tọa độ giao điểm của hai đường x-y=1 và x-2y=3 là:
\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay x=-1 và y=-2 vào y=(m+2)x-m2, ta được:
\(-m^2+\left(-1\right)\cdot\left(m+2\right)=-2\)
\(\Leftrightarrow-m^2-m-2=-2\)
\(\Leftrightarrow m^2+m=0\)
=>m=0 hoặc m=-1
(d) // (d') : y = -x + 3
\(\left\{{}\begin{matrix}m+3=-1\\n-2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\n\ne5\end{matrix}\right.\)
<=> (d) : \(y=-x+n-2\)
Thay x = -2 vào (d'') : y = 3x + 4
<=> y = -6 + 4 = -2
Vậy (d) cắt (d'') tại A(-2;-2)
<=> -2 = 2 + n - 2 <=> n = -2 (tmđk)
Vậy (d) : y = -x -4
1: Thay x=3 và y=6 vào (d), ta được:
3a+2=6
hay \(a=\dfrac{4}{3}\)
Đề bị lỗi hiển thị rồi bạn. Bạn xem lại.