Tìm giá trị lớn nhất của
M=\(\left(\sqrt{a}+\sqrt{b}\right)^2\)
Với a,b>0 và a+b\(\le\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)
Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)
b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)
Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)
\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)
\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)
\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)
\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)
Cộng các vế lại, ta được :
\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)
\(\Rightarrow B\le6\)
Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Em tham khảo ở đây:
Cho a,b,c > 0 và ab + bc + ac = 1. Chứng minh rằng :\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^... - Hoc24
\(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
\(\Rightarrow P\sqrt{2}=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(a+1\right)}\)
\(\le\frac{1}{2}\left(2a+b+1\right)+\frac{1}{2}\left(2b+a+1\right)\)
\(\le\frac{1}{2}\left(3a+3b+2\right)\le\frac{1}{2}.\left(3.2+2\right)=4\)
\(\Rightarrow p\le2\sqrt{2}\)
Dấu"=" xảy ra \(\Leftrightarrow a=b=1\)
Vậy Max P \(=2\sqrt{2}\)\(\Leftrightarrow a=b=1\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)
Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)
\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)
Cộng theo vế của (1);(2)&(3) ta đc:
A\(\le1\)
Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c
Ta có
\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow2\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Vậy GTLN là 2 đạt được khi \(a=b=\frac{1}{2}\)
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a) (AM-GM)
=4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2) (AM-GM)
=36 (do a2+b2=2)
=> M \(\le\)18
Dấu bằng có <=> a=b=1
Ta có: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\)=\(2a+2b\le2\)
\(Max\)\(M=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+\sqrt{b}\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow a=b=\dfrac{1}{2}\)
\(M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2;a+b\le1\left(a;b>0\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số \(\left(1;\sqrt[]{a}\right);\left(1;\sqrt[]{b}\right)\)
\(M=\left(1.\sqrt[]{a}+1.\sqrt[]{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\) \(\left(a+b\le1\right)\)
\(\Rightarrow M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2\le2\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{1}{\sqrt[]{a}}=\dfrac{1}{\sqrt[]{b}}\Leftrightarrow a=b=1\)
\(\Rightarrow GTLN\left(M\right)=2\left(khi.a=b=1\right)\)