Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(ĐK:x>0,x\ne1,x\ne4\)
\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)
Thay \(x=1\) vào \(A\), ta được:
\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a)
\(A=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{(\sqrt{x}-1)(x+1)}\right]\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+1)}=\frac{x+\sqrt{x}+1}{x+1}.\frac{(\sqrt{x}-1)(x+1)}{(\sqrt{x}-1)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(A=7\Leftrightarrow x+\sqrt{x}+1=7(\sqrt{x}-1)\)
\(\Leftrightarrow x-6\sqrt{x}+8=0\Leftrightarrow (\sqrt{x}-2)(\sqrt{x}-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=4\\ x=16\end{matrix}\right.\) (đều thỏa mãn)
c)
\(x=2(2+\sqrt{3})=4+2\sqrt{3}=3+1+2\sqrt{3.1}=(\sqrt{3}+1)^2\Rightarrow \sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{4+2\sqrt{3}+\sqrt{3}+1+1}{\sqrt{3}}=\frac{6+3\sqrt{3}}{\sqrt{3}}=3+2\sqrt{3}\)
d)
\(A< 1\Leftrightarrow \frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1<0\Leftrightarrow \frac{x-2\sqrt{x}+2}{\sqrt{x}-1}<0\)
\(\Leftrightarrow \frac{(\sqrt{x}-1)^2+1}{\sqrt{x}-1}<0\Leftrightarrow \sqrt{x}-1< 0\Leftrightarrow 0\leq x< 1\)
Lời giải:
a. ĐKXĐ: $x>1$
\(B=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}=\frac{(\sqrt{x+1}+\sqrt{x-1})^2}{2}=x+\sqrt{x^2-1}\)
b.
\(B=\frac{a^2+b^2}{2ab}+\sqrt{\frac{a^2+2ab+b^2}{2ab}.\frac{a^2-2ab+b^2}{2ab}}\)
\(=\frac{a^2+b^2}{2ab}+\sqrt{\frac{(a+b)^2(a-b)^2}{(2ab)^2}}=\frac{a^2+b^2}{2ab}+\frac{|a-b||a+b|}{|2ab|}=\frac{a^2+b^2}{2ab}+\frac{a^2-b^2}{2ab}=\frac{a}{b}\)
c.
$B\leq 1\Leftrightarrow (x-1)+\sqrt{x^2-1}\leq 0$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-1}+\sqrt{x+1})\leq 0$
$\Leftrightarrow \sqrt{x-1}\leq 0$
Mà $\sqrt{x-1}>0$ với mọi $x<1$ nên điều này vô lý)
Vậy không tồn tại $x$ thỏa đkđb
d.
$B=2\Leftrightarrow x+\sqrt{x^2-1}=2$
$\Leftrightarrow \sqrt{x^2-1}=2-x$
\(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2-1=(2-x)^2=x^2-4x+4\end{matrix}\right.\)
\(\Rightarrow x=\frac{5}{4}\)
Thử lại thấy thỏa mãn
Vậy......
\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)
\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)
\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)
Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)
\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)
\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\\ M=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\\ \Leftrightarrow1-a-b+ab+2\sqrt{ab}=1\\ \Leftrightarrow a+b-ab-2\sqrt{ab}=0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{a}-\sqrt{b}=\sqrt{ab}\\\sqrt{a}-\sqrt{b}=-\sqrt{ab}\end{matrix}\right.\)
Với \(\sqrt{a}-\sqrt{b}=\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)
Với \(\sqrt{a}-\sqrt{b}=-\sqrt{ab}\Leftrightarrow M=\dfrac{\sqrt{ab}}{-\sqrt{ab}}=-1\)
\(M=\dfrac{a\sqrt{a}-b\sqrt{b}-a\left(\sqrt{a}-\sqrt{b}\right)+b\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a\sqrt{b}+b\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(\left(1-a\right)\left(1-b\right)+2\sqrt{ab}=1\)
\(\Leftrightarrow a+b-ab-2\sqrt{ab}=0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2=ab\Leftrightarrow\sqrt{a}-\sqrt{b}=\sqrt{ab}\)
\(M=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}}{\sqrt{ab}}=1\)
3:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >9\end{matrix}\right.\)
\(M=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{3}\)
\(=\dfrac{6}{3\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\)
b: M>1/3
=>M-1/3>0
=>\(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{3}>0\)
=>\(\dfrac{6-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)
=>\(3-\sqrt{x}>0\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
c: \(\sqrt{x}+3>=3\) với mọi x thỏa mãn ĐKXĐ
=>\(M=\dfrac{2}{\sqrt{x}+3}< =\dfrac{2}{3}\) với mọi x thỏa mãn ĐKXĐ
Dấu = xảy ra khi x=0
a)ĐKXĐ:\(\begin{cases}x\ge0\\2\sqrt{x}-2\ne0\\1-x\ne0\\\end{cases}\)
`<=>` \(\begin{cases}x\ge0\\x\ne1\\\end{cases}\)
`B=1/(2sqrtx-2)-1/(2sqrtx+2)+sqrtx/(1-x)`
`=1/(2(sqrtx-1))-1/(2(sqrtx+1))-sqrtx/(x-1)`
`=(sqrtx+1-(sqrtx-1)-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`
`=(2-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`
`=(2(1-sqrtx))/(2(sqrtx-1)(sqrtx+1))`
`=-1/(sqrtx+1)`
`b)x=3`
`=>B=(-1)/(sqrt3+1)`
`=(-(sqrt3-1))/(3-1)`
`=(1-sqrt3)/2`
`c)|A|=1/2`
`<=>|(-1)/(sqrtx+1)|=1/2`
`<=>|1/(sqrtx+1)|=1/2`
`<=>1/(sqrtx+1)=1/2` do `1>0,sqrtx+1>=1>0`
`<=>sqrtx+1=2`
`<=>sqrtx=1`
`<=>x=1` loại vì `x ne 1`.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
b) Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
c) Ta có: \(\left|A\right|=\dfrac{1}{2}\)
nên \(\left[{}\begin{matrix}A=\dfrac{1}{2}\\A=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{2}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=-2\\\sqrt{x}+1=2\end{matrix}\right.\Leftrightarrow x=1\)(loại)
a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)
b) Với \(a>0;a\ne1;a\ne4\), ta có:
\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).