\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

7 tháng 8 2017

cho mình xin đề bài với cho hỏi tại sao có

\(\left(a-b\right)^2\left(17a^2+10ab+9b^2\right)\ge0\)

để suy ra \(\sqrt{2a\left(a+b\right)^3}\le\frac{5}{2}a^2+\frac{3}{2}b^2\)

7 tháng 8 2017

#Thắng: hình như là Ireland MO 2000 hay 2002 j đó , nãy vừa thấy trên fb <(") 

28 tháng 6 2017

a) \(ab^2\cdot\sqrt{\dfrac{3}{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)

= \(\sqrt{3}\)

b) b. \(\sqrt{\dfrac{27\cdot\left(a-3\right)^2}{48}=}\dfrac{\sqrt{27}\cdot\sqrt{\left(a-3\right)^2}}{\sqrt{48}}\)

= \(\dfrac{3\cdot\sqrt{3}\cdot\left(a-3\right)}{\sqrt{3}\cdot\sqrt{16}}=\dfrac{3\cdot\left(a-3\right)}{4}\)

= 0.75*(a-3)

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

18 tháng 10 2016

Ta có 

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow2\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

Vậy GTLN là 2 đạt được khi \(a=b=\frac{1}{2}\)

19 tháng 10 2016

thankz

6 tháng 7 2018

2)

\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)

\(=\sqrt{12,1.36.10}\)

= \(\sqrt{121.36}\)

\(=\sqrt{4356}\)

\(=66\)

3)

\(\sqrt{5a}.\sqrt{45a}-3a\)

\(=\sqrt{5.45a^2}-3a\)

\(=\sqrt{225a^2}-3a\)

\(=\sqrt{\left(15a\right)^2}-3a\)

\(=-15a-3a\) ( vì \(a\le0\))

\(=-18a\)

5)

\(\sqrt{0,36a^2}\)

\(=\sqrt{\left(0,6a\right)^2}\)

\(=-0,6a\) ( vì \(a< 0\) )

Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.

Chúc bạn học tốt!

6 tháng 7 2018

1)

\(\sqrt{3a^3}.\sqrt{12}\)

\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)

\(=\sqrt{3.12}.\sqrt{a^3}\)

\(=6\sqrt{a^3}\)

4)

\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)

\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)

\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)

\(=54a^3-6\sqrt{a^2}\)

\(=54a^3-6a^2\) ( vì a<0)

6)

\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)

\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)

\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)

\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)

\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)

\(=a^2\left(a-3\right)\)

\(=a^3-3a^2\)

Còn lại bạn làm tương tự nha, trể quá rùi :)))))