K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

\(f\left(x\right)=x+\sqrt[]{x^2-4}\)

\(f\left(x\right)\) xác định khi và chỉ khi

\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow x\le-2\cup x\ge2\)

Tập xác định : \(D=(-\infty;-2]\cup[2;+\infty)\)

\(f'\left(x\right)=1+\dfrac{x}{\sqrt[]{x^2-4}}\)

\(f'\left(x\right)=0\)

\(\Leftrightarrow1+\dfrac{x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\dfrac{\sqrt[]{x^2-4}+x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\sqrt[]{x^2-4}+x=0\left(x< -2;x>2\right)\)

Theo bất đẳng thức Bunhiacopxki:

\(\left(1.\sqrt[]{x^2-4}+1.x\right)^2\le2\left(2x^2+4\right)=4\left(x^2+2\right)\)

\(pt\Leftrightarrow4\left(x^2+2\right)=0\left(vô.lý\right)\)

\(\Rightarrow\) phương trình vô nghiệm

8 tháng 9 2023

Tiếp tục bài giải, mình nhấn nút gửi

\(...\Rightarrow f'\left(x\right)>0,\forall x\in D\)

\(\Rightarrow f\left(x\right)\) luôn luôn tăng trên tập xác định D.

19 tháng 10 2023

\(f\left(x\right)=\sqrt{x+1}+\sqrt{1-x}\) \(\left(-1\le x\le1\right)\)

\(f'\left(x\right)=\dfrac{1}{2\sqrt{x+1}}-\dfrac{1}{2\sqrt{1-x}}\)\(=\dfrac{\sqrt{1-x}-\sqrt{x+1}}{2\sqrt{1-x^2}}\)

\(f'\left(x\right)=0\Leftrightarrow x=0\)

Xét dấu \(f'\left(x\right)\)

Hàm số đồng biến trên \(\left(-1;0\right)\) và nghịch biến trên \(\left(0,1\right)\)

12 tháng 10 2023

loading...  loading...  loading...  

7 tháng 9 2023

7 tháng 9 2023

\(f'\left(x\right)=2-2cos2x\)

\(f'\left(x\right)=0\Leftrightarrow x=0\)

Hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;0\right)\)

NV
11 tháng 9 2021

a. ĐKXĐ: \(-3\le x\le3\)

\(y'=1-\dfrac{x}{\sqrt{9-x^2}}=\dfrac{\sqrt{9-x^2}-x}{\sqrt{9-x^2}}=0\Rightarrow x=\dfrac{3\sqrt{2}}{2}\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-3;\dfrac{3\sqrt{2}}{2}\right)\) và nghịch biến trên \(\left(\dfrac{3\sqrt{2}}{2};3\right)\)

b.

ĐKXĐ: \(x\ne2\)

\(y'=\dfrac{\left(-2x-1\right)\left(x+2\right)+x^2+x+2}{\left(x+2\right)^2}=\dfrac{-x^2-4x}{\left(x+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Dấu của y':

undefined

Hàm đồng biến trên các khoảng \(\left(-4;-2\right)\) và \(\left(-2;0\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-4\right)\) và \(\left(0;+\infty\right)\)

1 tháng 6 2021

TXĐ: D = R \ {-2}

Ta có: \(y'=\dfrac{\left(-2x+2\right)\left(x+2\right)-\left(-x^2+2x-1\right)}{\left(x+2\right)^2}=\dfrac{-x^2-4x+5}{\left(x+2\right)^2}\)

\(y'=0\Rightarrow-x^2-4x+5=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

⇒ Hàm số y đồng biến trên (-5, -2) và (-2, 1)

Hàm số y nghịch biến trên (-∞, -5) và (1, +∞)