cho 1 tam giác đều cạnh a
a, Tính độ dài đg cao của tam giác đó theo a
b, Tính diện tích của tam giác đó theo a
Giúp mk vs ạ. Cảm ơn mn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cảm ơn em câu hỏi của em thật là thù vị. Về thắc mắc của em cô nghĩ chắc cũng có nhiều bạn đang muốn biết lắm ý nhỉ? Về vấn đề em hỏi cô xin trả lời như sau:
Tình theo a ở đây không phải là a mà mình tùy chọn em nhá. a ở đây là một ẩn a, em cứ tính độ dài của tam giác đó theo ẩn a thôi em ạ!
Vì ABC là tam giác đều nên đường cao cũng là đường trung tuyến của tam giác. Gọi AH là đường cao của tam giác thì
BH = HC = \(\dfrac{1}{2}\)a
Xét tam giác ACH vuông tại H. Theo pytago ta có:
AC2 = AH2 + HC2
⇒ AH2 = AC2 - HC2
⇒AH2 = a2 - (\(\dfrac{1}{2}\)a)2 = \(\dfrac{3}{4}\)a2
⇒ AH = \(\sqrt{\dfrac{3}{4}a^2}\) = \(\dfrac{3\sqrt{a}}{2}\)
Chiều cao hình tam giác đó là :
65 : 100 x 20 = 13 ( m )
Diện tích hình tam giác đó là :
( 65 x 13 ) : 2 = 422,5 (m2)
Đáp số : ....
Chiều cao là :
65 x 20% = 13 (m)
Diện tích là :
65 x 13 : 2 = 422,5 (m2)
Gợi ý thôi nhé.
a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)
Tương tự như vậy, ta tính được AC, BC.
Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)
b) Chu vi thì bạn lấy 3 cạnh cộng lại.
Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)
Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)
Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M.
Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.
a) Độ dài đường cao \(h\):
\(SinB=\dfrac{h}{AB}\Rightarrow h=AB.sin60^o=\dfrac{a\sqrt[]{2}}{2}\left(cm\right)\)
b) Nửa chu vi tam giác đó :
\(p=\dfrac{a+a+a}{2}=\dfrac{3a}{2}\)
Diện tích tam giác :
\(S=\sqrt[]{p\left(p-a\right)\left(p-a\right)\left(p-a\right)}\)
\(\Rightarrow S=\sqrt[]{p\left(p-a\right)^3}\)
\(\Rightarrow S=\sqrt[]{\dfrac{3a}{2}\left(\dfrac{3a}{2}-a\right)^3}=\sqrt[]{\dfrac{3a}{2}\left(\dfrac{a}{2}\right)^3}=\sqrt[]{\dfrac{3a^4}{16}}=\dfrac{a^2\sqrt[]{3}}{4}\)
a:Gọi tam giác đề bài cho là ΔABC đều có AH là đường cao
=>H là trung điểm của BC
=>HB=HC=a/2
AH=căn AB^2-AH^2
=a*căn 3/2
b: S ABC=1/2*AH*BC
=a^2*căn 3/4