Tìm x biết :
10x = 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+2+3+...+100=10x-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\left(6.20-3.40\right)\)
\(\Rightarrow5050=10x-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right).0\)
\(\Rightarrow5050=10x\)
\(\Rightarrow x=505\)
\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\left(\frac{\left(5x+2\right)\left(x+10\right)+\left(5x-2\right)\left(x-10\right)}{x\left(x^2-100\right)}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{10\left(x^2+4\right)}{x\left(x^2-100\right)}.\frac{x^2-100}{x^2+4}=\frac{10}{x}\)
Với \(x=20040\)
\(\Rightarrow A=\frac{10}{20040}=\frac{1}{2004}\)
\(10x=15y\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(15y=6z\Rightarrow\frac{y}{6}=\frac{z}{15}\left(2\right)\)
Chia hai vế của (1) cho 3 ta được: \(\frac{x}{45}=\frac{y}{30}\)
Chia hai vế của (2) cho 5 ta được: \(\frac{z}{75}=\frac{y}{30}\)
Từ đó ta có; \(\frac{x}{15}=\frac{y}{30}=\frac{z}{75}=\frac{10x}{450}=\frac{5y}{150}\\ =\frac{10x-5y+z}{450-150+75}=\frac{25}{375}=\frac{1}{15}\)
Suy ra: \(x=3;y=2;z=5\)
Đặt \(x^{10}=a\ge0\)
Khi đó:
\(a^{10}-10a+2029\)
\(=\left(a^{10}+1+1+1+1\right)-10a+2025\)
\(\ge5\sqrt[5]{a^{10}}-10a+2025\)
\(=5a^2-10a+2025\)
\(=5\left(a^2-2a+1\right)+2020\)
\(=5\left(a-1\right)^2+2020\ge2020\)
Đẳng thức xảy ra tại x=1 hoặc x=-1
15y=6z =>5y=2z (chia 3 đi)
Đổi 10x = 6z
Vậy ta có:
6z - 2z + z=25
5z=25
=> z=5 ; x=3 ; y=2
Nếu sai thì em xin lỗi
10x=100
x=100:10
x=10
10x = 100
x = 100 : 10
x = 10
Ai tk mk mk tk lại :)
Ai ngang qua xin để lại 1 L - I - K - E