K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

\(1+2+3+...+100=10x-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\left(6.20-3.40\right)\)

\(\Rightarrow5050=10x-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right).0\)

\(\Rightarrow5050=10x\)

\(\Rightarrow x=505\)

30 tháng 7 2019

A=[2+4+6+...+100][3/5:0,7+3[-2/7]]:[1/2+1/4+1/6+...+1/100]

A=[2+4+6+...+100][6/7+[-6/7]]:[1/2+1/4+1/6+...+1/100]

A=[2+4+6+...+100][0]:[1/2+14+1/6+...+1/100]

A=0

CHỈ MK CÁCH VIẾT PHÂN SỐ ĐI

28 tháng 3 2020

a) (1-1/2)(1-1/3)...(1-1/100)=lx-1 99/100l

=> (1-1/2)(1-1/3)...(1-1/100)=1/2.2/3.3/4...99/100

=> (1-1/2)(1-1/3)...(1-1/100)=1.2.3.4....99/2.3.4....100

=>(1-1/2)(1-1/3)...(1-1/100)=1/100      (1)

từ (1)=>1/100= l x-1 99/100 l

TH1:x-1 99/100 =1/100                 TH2 : x-1 99/100= -1/100

=>x- 199/100 =1/100                           =>x- 199/100= -1/100

=>x=1/100+199/100                            =>x=-1/100+199/100

=>x=200/100                                       =>x=198/100

=>x=2                                                  =>x=99/50

Vậy x=2 hoặc x=99/50

12 tháng 12 2019

a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)

\(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)

=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)

\(\frac{-5}{12}-\frac{8}{5}\)

\(\frac{\left(-25\right)-96}{60}\)

\(\frac{\left(-25\right)+\left(-96\right)}{60}\)

=\(\frac{121}{60}\)

b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)

\(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)

=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)

\(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)

=\(\frac{-29}{24}\)

c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)

     =\(\frac{3}{5}\)

d)\(\frac{5^4.20^4}{25^5.4^5}\)

=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)

=\(\frac{100^4}{100^5}\)

=\(\frac{1}{100}\)

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

10 tháng 10 2017

345,345678

8 tháng 8 2016

Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)

Áp dụng , đặt biểu thức cần tính là A , ta có : 

\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)

\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)

Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0

làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc

ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)

=>biểu thức ấy =0

16 tháng 6 2016

đề hơi lạ xem lại

16 tháng 6 2016

Ta có :5/x = 1/8 - y/4 = (1-2y)/8 
<=> x = 5.8/(1-2y) ; thấy 1-2y là số lẻ nên ƯCLN(8,1-2y) = 1 
do đó x/8 = 5/(1-2y) 
Để x, y nguyên khi 1-2y phải là ước của 5 
*Xét 1-2y = -1 => y = 1 => x = -40 
*Xét 1-2y = 1 => y = 0 => x = 40 
*Xét 1-2y = -5 => y = 3 => x = -8 
*Xét 1-2y = 5 => y = -2 => x = 8 
Vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5) 

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0