Tìm nghiệm nguyên của phương trình: \(3^x+4^x=5^x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia cả 2 vế pt cho 5^x ta được :
(3/5)^x + (4/5)^x = 1
Ta thấy x=2 là nghiệm của pt
+, Nếu x < 2
=> (3/5)^x > (3/5)^2 = 9/25 ( vì 3/5 < 1 )
(4/5)^x > (4/5)^2 = 16/25
=> VT > 9+16/25 = 1 = VP
=> pt vô nghiệm
+, Nếu x > 2
=> (3/5)^x < (3/5)^2 = 9/25
(4/5)^x < (4/5)^2 = 16/25
=> VT < 9+16/25 = 1 = VP
=> pt vô nghiệm
Vậy x = 2
Tk mk nha
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Chia cả 2 vế của phương trình cho 5x≠05x≠0 ta được phương trình tương đương:
PT⇔(3/5)x+(4/5)x=1
- Nếu x=2 thì (3/5)2+(4/5)2=1 (đúng)
- Nếu x>2 thì (3/5)x<3/5;(4/5)x<4/5⇒VT (loại)
- Nếu x=0 thì 2=1 (vô lí!)
- Tương tự với trường hợp x< 2
Vậy nghiệm của phương trình là x=2
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
4(x+y)=11+xy <=> 4x+4y=11+xy
<=> xy-4y=4x-11 <=> y(x-4)=4x-11
=> \(y=\frac{4x-11}{x-4}=\frac{4x-16+5}{x-4}=\frac{4\left(x-4\right)+5}{x-4}\)=> \(y=4+\frac{5}{x-4}\)
Để y nguyên => x-4=(-5,-1,1,5)
x-4 | -5 | -1 | 1 | 5 |
x | -1 | 3 | 5 | 9 |
y | 3 | -1 | 9 | 5 |
Các cặp (x,y) thỏa mãn là (-1,3); (3,-1); (5,9); (9,5)
b/ x3-2x-4=0
<=> x3-4x+2x-4=0
<=> x(x2-4)+2(x-2)=0
<=> x(x-2)(x+2)+2(x-2)=0
<=> (x-2)(x2+2x+2)=0
Nhận thấy, x2+2x+2=x2+2x+1+1 = (x+1)2+1 > 0 với mọi x
=> Phương trình có nghiệm duy nhất là: x-2=0 <=> x=2
Đáp số: x=2
\(3^x+4^x=5^x\left(1\right)\)
Ta thấy : \(x=1;pt\left(1\right)\Leftrightarrow3+4=5\left(loại\right)\)
\(x=2;pt\left(1\right)\Leftrightarrow9+16=25\left(thỏa\right)\)
vì \(pt\left(1\right):3^x+4^x=5^x\) chỉ có nghiệm \(x=2\) và vô nghiệm khi \(x>2\) (theo định lý fermat)
Vậy pt (1) chỉ có 1 nghiệm \(x=2\)