cho a,b thoả mãn a+b=23, a.b=132 hãy tính a2+b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a=12\\b=11\end{cases}}\)hoặc \(\hept{\begin{cases}a=11\\b=12\end{cases}}\)
Ta có \(a^2+b^2=11^2+12^2=265\)
Hoặc \(a^2+b^2=12^2+11^2=265\)
.. Kết bạn với mình nha
Ta có :
a . b = 132 => a = \(\frac{132}{b}\).Thay a = \(\frac{132}{b}\)vào biểu thức a + b = 23 ta được :
\(\frac{132}{b}+b=23\)\(\Leftrightarrow\frac{132+b^2}{b}=23\)\(\Leftrightarrow b^2-23b+132=0\)\(\Leftrightarrow\orbr{\begin{cases}b=12\\b=11\end{cases}}\)
Với b = 12 => a = 132 : 12 = 11 => \(a^2+b^2=11^2+12^2=265\)
Với b = 11 => a = 132 : 11 = 12 => \(a^2+b^2=12^2+11^2=265\)
Đáp số: \(a^2+b^2=265\)
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)
Chọn C.
Theo đầu bài ta có; b(b2 - a2) = c(c2 - a2)
Hay b3 - c3 = a2(b - c)
Mà b - c ≠ 0 nên b2 + bc + c2 = a2
Theo định lí côsin thì a2 = b2 + c2 - 2bccosA
Do đó: b2 + bc + c2 = b2 + c2 - 2bccosA
Suy ra: cos A = - ½ hay góc A bằng 1200.
\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)
Chọn C.
Ta có a2 + b2 = 14ab nên (a + b)2 = 16ab hay
+ Nên ta có vậy A đúng
+ 2log2( a + b) = log2 (a + b) 2= log2( 16ab) = 4 + log2a + log2b.
vậy B đúng
+ 2log4(a + b) = log4( a + b)2= log4(16ab) = 2 + log4a + log4b . vậy C sai
+ vậy D đúng.
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
Ta có:a+b=23\(\Rightarrow\)(a+b)2=232
\(\Rightarrow\)(a+b)2=529\(\Rightarrow\)a2+2ab+b2=529
\(\Rightarrow\)a2+b2=529-2.132
\(\Rightarrow\)a2+b2=529-264\(\Rightarrow a^2+b^2=265\)
Ta có: (a+b)^2=a^2+2ab+b^2
Thay a+b=23 ,a.b=132 vào biểu thức ta có:
23^2=a^2+b^2+2.132
529=a^+b^2+264
529-264=a^2+b^2
265 =a^2+b^2
Vậy a^2+b^2=265
k mik nha bạn