Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a+b=23\(\Rightarrow\)(a+b)2=232
\(\Rightarrow\)(a+b)2=529\(\Rightarrow\)a2+2ab+b2=529
\(\Rightarrow\)a2+b2=529-2.132
\(\Rightarrow\)a2+b2=529-264\(\Rightarrow a^2+b^2=265\)
Ta có: (a+b)^2=a^2+2ab+b^2
Thay a+b=23 ,a.b=132 vào biểu thức ta có:
23^2=a^2+b^2+2.132
529=a^+b^2+264
529-264=a^2+b^2
265 =a^2+b^2
Vậy a^2+b^2=265
k mik nha bạn
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
\(a+b\ge a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)
\(\Rightarrow2\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le1\)
Xét \(Q=\dfrac{a}{a+1}+\dfrac{b}{b+1}=\dfrac{a\left(b+1\right)+b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}=\dfrac{a+b+2ab}{\left(a+1\right)\left(b+1\right)}\)
\(Q=\dfrac{a+b+ab+ab}{\left(a+1\right)\left(b+1\right)}\le\dfrac{a+b+ab+1}{\left(a+1\right)\left(b+1\right)}=\dfrac{\left(a+1\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}=1\)
\(\Rightarrow P\le2020+1^{2021}=2021\)
Dấu "=" xảy ra khi \(a=b=1\)
\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)
\(a>b>0\Rightarrow a+b>0\)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab=7^2+4.60=289\Rightarrow a+b=17\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=7.17=119\)
\(a^2+b^2=\left(a-b\right)^2+2ab=7^2+2.60=169\)
\(\Rightarrow a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=169^2-2.60^2=21361\)
\(\hept{\begin{cases}a=12\\b=11\end{cases}}\)hoặc \(\hept{\begin{cases}a=11\\b=12\end{cases}}\)
Ta có \(a^2+b^2=11^2+12^2=265\)
Hoặc \(a^2+b^2=12^2+11^2=265\)
.. Kết bạn với mình nha
Ta có :
a . b = 132 => a = \(\frac{132}{b}\).Thay a = \(\frac{132}{b}\)vào biểu thức a + b = 23 ta được :
\(\frac{132}{b}+b=23\)\(\Leftrightarrow\frac{132+b^2}{b}=23\)\(\Leftrightarrow b^2-23b+132=0\)\(\Leftrightarrow\orbr{\begin{cases}b=12\\b=11\end{cases}}\)
Với b = 12 => a = 132 : 12 = 11 => \(a^2+b^2=11^2+12^2=265\)
Với b = 11 => a = 132 : 11 = 12 => \(a^2+b^2=12^2+11^2=265\)
Đáp số: \(a^2+b^2=265\)