K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

PT \(\Leftrightarrow-2\left(1-2.sin^2\dfrac{x}{2}\right)-\sqrt{3}.cos2x=-1+2\left(cosx.cos\dfrac{3\pi}{4}-sinx.sin\dfrac{3\pi}{4}\right)^2\)

\(\Leftrightarrow-2.cosx-\sqrt{3}.cos2x=-1+2\left(cosx.-\dfrac{\sqrt{2}}{2}-sinx.\dfrac{\sqrt{2}}{2}\right)^2\)

\(\Leftrightarrow-2cosx-\sqrt{3}.cos2x=-1+\left(sinx+cosx\right)^2\)

\(\Leftrightarrow-2cosx=2sinx.cosx+\sqrt{3}cos2x\)

\(\Leftrightarrow-2cosx=sin2x+\sqrt{3}cos2x\)

\(\Leftrightarrow cos\left(\pi-x\right)=\dfrac{1}{2}.sin2x+\dfrac{\sqrt{3}}{2}.cos2x\)

\(\Leftrightarrow cos\left(\pi-x\right)=sin\left(2x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(\pi-x\right)=cos\left(\dfrac{\pi}{6}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\pi-x=\dfrac{\pi}{6}-2x+k2\pi\\\pi-x=-\dfrac{\pi}{6}+2x+k2\pi\end{matrix}\right.\) ( k nguyên )

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{7\pi}{18}-\dfrac{k2\pi}{3}\end{matrix}\right.\) ( k nguyên )

Vậy...