Tìm min
B= x^2 - x +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em kiểm tra lại đề, mẫu số của phân số đầu tiên chắc chắn bị sai
Vì \(\dfrac{1}{2}\ne\dfrac{-2}{3}\)
nên hệ luôn có nghiệm duy nhất
a: \(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y=-6m-8\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-4y-2x-3y=-6m-8-8m+1\\2x+3y=8m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7y=-14m-7\\2x=8m-1-3y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\2x=8m-1-6m-3=2m-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2m+1\\x=m-2\end{matrix}\right.\)
Đặt \(A=y^2+3x-1\)
\(=\left(2m+1\right)^2+3\left(m-2\right)-1\)
\(=4m^2+4m+1+3m-6-1\)
\(=4m^2+7m-6\)
\(=4\left(m^2+\dfrac{7}{4}m-\dfrac{3}{2}\right)\)
\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{8}+\dfrac{49}{64}-\dfrac{145}{64}\right)\)
\(=4\left(m+\dfrac{7}{8}\right)^2-\dfrac{145}{16}>=-\dfrac{145}{16}\)
Dấu '=' xảy ra khi m=-7/8
b: Đặt B=x^2-y^2
\(=\left(m-2\right)^2-\left(2m+1\right)^2\)
\(=m^2-4m+4-4m^2-4m-1\)
\(=-3m^2-8m+3\)
\(=-3\left(m^2+\dfrac{8}{3}m-1\right)\)
\(=-3\left(m^2+2\cdot m\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{25}{9}\right)\)
\(=-3\left(m+\dfrac{4}{3}\right)^2+\dfrac{25}{3}< =\dfrac{25}{3}\)
Dấu '=' xảy ra khi m=-4/3
\(B=x+y+\dfrac{6}{x}+\dfrac{24}{y}=\left(\dfrac{3x}{2}+\dfrac{6}{x}\right)+\left(\dfrac{3y}{2}+\dfrac{24}{y}\right)-\dfrac{3}{2}\left(x+y\right)\)
\(B\ge2\sqrt{\dfrac{18x}{2x}}+2\sqrt{\dfrac{72y}{2y}}-\dfrac{3}{2}.6=15\)
\(B_{min}=15\) khi \(\left(x;y\right)=\left(2;4\right)\)
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\forall x\)
Vậy Min B = 0 khi x = 0
lquen nha
\(B=\dfrac{x+16}{\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}+3\right)^2-6\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}\)
\(=\sqrt{x}+3-6+\dfrac{25}{\sqrt{x}+3}\)
\(B\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}-6=2.5-6=4\)
MinB là 4 khi x=4
Cho a < b
a) So sánh 5a - 8 và 5b - 8
Ta có : a < b
⇔ 5a < 5b
⇔ 5a - 8 < 5b - 8
B = |x + 1| + 2|6,9 - 3y| + 3
Nhận thấy \(\hept{\begin{cases}\left|x+1\right|\ge0\forall x\\2\left|6,9-3y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x+1\right|+2\left|6,9-3y\right|\ge0\forall x;y\)
=> \(\left|x+1\right|+2\left|6,9-3y\right|+3\ge3\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1=0\\6,9-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2,3\end{cases}}\)
Vậy Min B = 3 <=> x = - 1 ; y = 2,3
\(B=x^2-x+1\)
\(B=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(B=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) nên \(B=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{min}=\dfrac{3}{4}\)khi \(x=\dfrac{1}{2}\)
B=x^2-x+1
=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2