K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(\dfrac{1}{2}\ne\dfrac{-2}{3}\)

nên hệ luôn có nghiệm duy nhất

a: \(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-6m-8\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y-2x-3y=-6m-8-8m+1\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-7y=-14m-7\\2x=8m-1-3y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2m+1\\2x=8m-1-6m-3=2m-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2m+1\\x=m-2\end{matrix}\right.\)

Đặt \(A=y^2+3x-1\)

\(=\left(2m+1\right)^2+3\left(m-2\right)-1\)

\(=4m^2+4m+1+3m-6-1\)

\(=4m^2+7m-6\)

\(=4\left(m^2+\dfrac{7}{4}m-\dfrac{3}{2}\right)\)

\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{8}+\dfrac{49}{64}-\dfrac{145}{64}\right)\)

\(=4\left(m+\dfrac{7}{8}\right)^2-\dfrac{145}{16}>=-\dfrac{145}{16}\)
Dấu '=' xảy ra khi m=-7/8

b: Đặt B=x^2-y^2

\(=\left(m-2\right)^2-\left(2m+1\right)^2\)

\(=m^2-4m+4-4m^2-4m-1\)

\(=-3m^2-8m+3\)

\(=-3\left(m^2+\dfrac{8}{3}m-1\right)\)

\(=-3\left(m^2+2\cdot m\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{25}{9}\right)\)

\(=-3\left(m+\dfrac{4}{3}\right)^2+\dfrac{25}{3}< =\dfrac{25}{3}\)

Dấu '=' xảy ra khi m=-4/3

a: Vì \(\dfrac{1}{2}\ne\dfrac{-2}{1}=-2\)

nên hệ phương trình luôn có nghiệm duy nhất

b: \(\left\{{}\begin{matrix}x-2y=4-m\\2x+y=8m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=4-m\\4x+2y=16m+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+4x=4-m+16m+6=15m+10\\2x+y=8m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=15m+10\\y=8m+3-2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3m+2\\y=8m+3-6m-4=2m-1\end{matrix}\right.\)

Đặt \(A=x^2+y^2\)

\(=\left(3m+2\right)^2+\left(2m-1\right)^2\)

\(=9m^2+12m+4+4m^2-4m+1\)

\(=13m^2+8m+5\)

\(=13\left(m^2+\dfrac{8}{13}m+\dfrac{5}{13}\right)\)

\(=13\left(m^2+2\cdot m\cdot\dfrac{4}{13}+\dfrac{16}{169}+\dfrac{49}{169}\right)\)

\(=13\left(m+\dfrac{4}{13}\right)^2+\dfrac{49}{13}>=\dfrac{49}{13}\forall m\)

Dấu '=' xảy ra khi \(m+\dfrac{4}{13}=0\)

=>\(m=-\dfrac{4}{13}\)

AH
Akai Haruma
Giáo viên
27 tháng 1

Lời giải:

Lấy PT(1) + 3PT(2) ta được:
$mx-3y+3x+3y=7$

$\Leftrightarrow x(m+3)=7(*)$

Để hpt có nghiệm duy nhất $(x,y)$ thì pt $(*)$ phải có nghiệm $x$ duy nhất.

Điều này xảy ra khi $m+3\neq 0\Leftrightarrow m\neq -3$
Khi đó:

$x=\frac{7}{m+3}$

$x=1-y=1-\frac{7}{m+3}=\frac{m-4}{m+3}$

Áp dụng BĐT Cô-si ta thấy:

$x^2+y^2\geq \frac{1}{2}(x+y)^2=\frac{1}{2}$

$\Rightarrow x^2+y^2$ đạt min bằng $\frac{1}{2}$. Giá trị này đạt tại $x=y$

$\Leftrightarrow \frac{7}{m+3}=\frac{m-4}{m+3}$

$\Leftrihgtarrow 7=m-4$

$\Leftrightarrow m=11$ 

11 tháng 1 2022

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)

\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)

\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)

\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy ...

 

 

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1

22 tháng 1 2021

\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\\dfrac{3m-1-y}{2}-2y=-m-3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\3m-1-y-4y=-2m-6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\5y=5m+5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\y=m+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-m-1}{2}\\y=m+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)

Vậy hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)

Ta có: y = x2 \(\Leftrightarrow\) m + 1 = (m - 1)2 \(\Leftrightarrow\) m + 1 = m2 - 2m + 1

\(\Leftrightarrow\) m2 - 3m = 0

\(\Leftrightarrow\) m(m - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

Vậy m = 0; m = 3 thì hpt trên có nghiệm duy nhất và thỏa mãn y = x2

Chúc bn học tốt!

Vì \(\dfrac{3}{1}\ne\dfrac{-1}{2}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-7y=2m-1-9m-6=-7m-7\\x+2y=3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)

\(y-\sqrt{x}=1\)

=>\(m+1-\sqrt{m}=1\)

=>\(m-\sqrt{m}=0\)

=>\(\sqrt{m}\left(\sqrt{m}-1\right)=0\)

=>\(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
9 tháng 2 2017

Lời giải:

Nhân PT (2) với $m$ và trừ hai phương trình cho nhau:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} (m+1)x-my=3m-1\\ 2xm-ym=m^2+m\end{matrix}\right.\Rightarrow mx-x=m^2-2m+1\)

\(\Rightarrow x=m-1\). Thay vào bất kỳ phương trình nào suy ra \(y=m-3\)

Do đó \(x^2+y^2=(m-1)^2+(m-3)^2=2m^2-8m+10=2(m-2)^2+2\)

\(\Rightarrow x^2+y^2\geq 2\Leftrightarrow m=2\)

Vậy HPT có nghiệm thỏa mãn \((x^2+y^2)_{\min}\Leftrightarrow m=2\)

10 tháng 2 2017

m =0 có nghiệm x=-1 và y=-3

=> nhân với số 0 hệ sy biến mất kiểm soát

Giải:

Từ (2) thế y=2x-m-1 vào (1)

\(\left(m+1\right)x-m\left(2x-m-1\right)=3m-1\)

\(\left(1-m\right)x+m^2+m=3m-1\Leftrightarrow\left(m-1\right)x=m^2-2m+1=\left(m-1\right)^2\)

\(\left\{\begin{matrix}y=\left(2x-\left(m+1\right)\right)\left(3\right)\\\left(m-1\right)x=\left(m-1\right)^2\left(4\right)\end{matrix}\right.\)

Với m=1 (4) <=> 0x=1 => vô N0 với x

Với m khác 1 (*)

\(\left\{\begin{matrix}x=m-1\\y=m-3\end{matrix}\right.\)\(\Rightarrow x^2+y^2=\left(m-1\right)^2+\left(m-3\right)^2=\left(m^2-2m+1\right)+\left(m^2-6m+9\right)=2\left(m^2-4m+5\right)=2\left[\left(m-2\right)^2+1\right]\)

\(S=x^2+y^2=2\left[\left(m-2\right)^2+1\right]\ge2\) đẳng thức khi m=2 thỏa mãn đk (*)

Đáp số: m=2

14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )