Chứng minh rằng : M = ab + ba chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)
a, a b + b a = (10a+b)+(10b+a) = 11a+11b = 11.(a+b) ⋮ 11
b, a b - b a = (10a+b) - (10b+a) = 9a - 9b = 9(a - b) ⋮ 9 (a>b)
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
a)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
b)ab-ba⋮9
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b-10b+a
= 9a - 9b
Ta thấy: 9a⋮9 ; 9b⋮9
=>ab+ba⋮9 (ĐPCM)
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Theo đề bài ra, ta có :
`ab` `+` `ba` `=` `10a` `+` `b` `+` `10b` `+ a`
`=` `11a` `+` `11b`
`=` `11` `(a+b)`
\(\rightarrow\) `11` `(a+b)` chia hết cho `11`
\(\Rightarrow\) `ab` `+` `ba` chia hết cho `11`
@Nae
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 ( Đpcm)
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
Ta có : \(\overline{ab}+\overline{ba}\text{=}10a+b+10b+a\)
\(\text{=}\left(10a+a\right)+\left(10b+b\right)\)
\(\text{=}11a+11b\)
\(\text{=}11\left(a+b\right)\)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)
Ta có :
ab=a.10+b.1
ba=b.10+a.1
⇒ab+ba=a.11+b.11
⇒ab+ba=11.(a+b)
Vì 11⋮11 ⇒ 11.(a+b)
⇒11.(a+b) ⋮ 11
⇒(ab+ba)⋮ 11
Vậy(ab+ba)⋮11
đặt c = a+ b
ta có: ab¯ + ba¯ =cc¯
mà cc¯ chia hết cho 11 ( cc¯:11=c)
ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
ab+ba=10a + b +10b + a = 11a + 11b = 11 (a+b) chia hết cho 111
tớ chỉ giải đc 1 câu thôi còn câu b tịt
ab + ba
=a0+b + b0+a
=aa +bb
=a.11 + b.11
=11(a+b) chia hết cho 11
vậy...........
ta có:
\(M=\overline{ab}+\overline{ba}⋮11\Rightarrow\overline{a0}+b+\overline{b0}+a⋮11\)
\(\Rightarrow10a+b+10b+a⋮11\)
\(\Rightarrow11a+11b⋮11\)
Ta thấy: \(\hept{\begin{cases}11a⋮11\\11b⋮11\end{cases}}\)
\(\Rightarrow11a+11b⋮11\)
Vậy \(M⋮11\)