Tìm n biết : 10 < 2n < 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n^3-6=10\Rightarrow2n^3=16\Rightarrow n^3=8=2^3\Rightarrow n=2\\ 2n^2-8=10\Rightarrow2n^2=18\Rightarrow n^2=9\Rightarrow\left[{}\begin{matrix}n=3\\n=-3\end{matrix}\right.\)
a: \(\Leftrightarrow n^3=8\)
hay n=2
b: \(\Leftrightarrow n^2=9\)
hay \(n\in\left\{3;-3\right\}\)
2n + 10 ⋮ 2n - 3 (n \(\in\) Z)
2n - 3 + 13 ⋮ 2n - 3
13 ⋮ 2n - 3
2n - 3 \(\in\) Ư(13) ={-13; -1; 1; 13}
n \(\in\) {-5; 1; 2; 8}
2n + 10 ⋮ 2n - 3 (n \(\in\) Z)
2n - 3 + 13 ⋮ 2n - 3
13 ⋮ 2n - 3
2n - 3 \(\in\) Ư(13) = {-13; -1; 1; 13}
n \(\in\) {-5; 1; 2; 8}
Bài 1 :
=> x \(\in\) Ư(493) <=> x \(\in\) {1 ; 17 ; 29 ; 143). Mà 10 < x < 100 => x \(\in\) {17 ; 29)
Bài 2 :
20 chia hết cho 2n + 1 <=> 2n + 1 \(\in\) Ư(20) <=> 2n + 1 \(\in\) {1 ; 2 ; 4 ; 5 ; 10 ; 20}
<=> 2n \(\in\) {0 ; 4} <=> n \(\in\) {0 ; 2}
2n+10 chia hết 2n+3
2n + 7 + 3 chia hết cho 2n+3
Mà 2n+3 chia hết cho 2n+3
Suy ra 7 chia hết cho 2n+3
Suy ra 2n+3 = 1 hoặc 7
Suy ra 2n+3 bằng 7
Suy ra n = 2
Giả thiết tương đương:
\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))
Mặt khác:
\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)
\(C_{2n+1}^{2n}=C_{2n+1}^1\)
....
\(C_{2n+1}^{n+1}=C_{2n+1}^n\)
Cộng vế:
\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)
\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)
\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))
\(\Leftrightarrow2^{101}=2^{2n+1}\)
\(\Rightarrow2n+1=101\)
\(\Rightarrow n=50\)
SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)
\(100-5k=20\Rightarrow k=16\)
Hệ số: \(C_{50}^{16}\)
Giữa 100 số tự nhiên lẻ cũng có 100 số tự nhiên chẵn
=> Khoảng cách số đầu và cuối là 200
Khoảng cách 2n và n là 2n-n =n
=> n=200
Gỉa sữ n = 100 thì 2n = 100 x 2 = 200
mà n lại là số lẻ nên suy ra n = 200 - 1 = 199
Vậy n = 199
n \(\in\){ 4; 5; 6 }
n ∈{ 4; 5; 6 }