\(Cho\) \(n\in Z\)
\(x\in Q\)
\(CMR:\)
\(\left[n+x\right]=n+\left[x\right]\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BCNN(6;15)=30
nên tập hợp các bội của 30 sẽ là giao của 2 tập bội của 6 và bội của 15
=>C=A giao B
Có các phần tử của A là bội của 6
Các phần tử của B là bội của 15
Các phần tử của C là bội của 30
mà [6;15]=30
=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30
Hay \(C=A\cap B\)
Lời giải:
Đặt $x=[x]+m$ với $0\leq m< 1$
$[x+n]=[[x]+n+m]$. Vì $[x]+n$ nguyên, $0\leq m< 1$ nên:
$[[x]+n+m]=[x]+n$ theo tính chất phần nguyên (đpcm)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
Lời giải:
Tập A sửa lại thành \(A=\left\{\frac{1}{6};\frac{1}{12};\frac{1}{20}; \frac{1}{30};....;\frac{1}{420}\right\}\)
Ta thấy:
\(\frac{1}{6}=\frac{1}{2.3}\)
\(\frac{1}{12}=\frac{1}{3.4}\)
\(\frac{1}{20}=\frac{1}{4.5}\)
.....
\(\frac{1}{420}=\frac{1}{20.21}\)
Do đó công thức tổng quát của các phần tử thuộc tập A là \(\frac{1}{x(x+1)}|x\in \mathbb{N}; 2\leq x\leq 20\)
Đáp án D.
Gọi a là phần nguyên của x, r là phần lẻ của x (a thuộc Z, n thuộc Q và 0 < n < 1)
=> x = a + r ; [x] = a
Ta có:
[n+x] = [n+a+r] = n +a ( do 0 < r <1)
Mà n + [x] = n+ a
=> [n+x] = n + [x]
Đúng nhớ cảm ơn mình nhé