\(Cho\) \(n\in Z\)

            \(x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Gọi a là phần nguyên của x, r là phần lẻ của x (a thuộc Z, n thuộc Q và 0 < n < 1)

=> x = a + r ; [x] = a

Ta có: 

[n+x] = [n+a+r] = n +a ( do 0 < r <1)

Mà n + [x] = n+ a

=> [n+x] = n + [x]

Đúng nhớ cảm ơn mình nhé

a: |x|=4

=>x=4(nhận) hoặc x=-4(loại)

b: |-x|=1

=>|x|=1

=>x=1(nhận) hoặc x=-1(loại)

c: |x|=7

=>x=7(loại) hoặc x=-7(nhận)

d: |-x|=|-2|

=>|x|=2

=>x=2 hoặc x=-2

26 tháng 7 2017

a,

- Theo đề bài ta có:

(8x-1)2n-1 = 52n-1

=> 8x-1 = 5

8x = 6

x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)

- Vậy x = \(\dfrac{3}{4}\)

b,

- Ta có:

(x - 7)x+1 - (x - 7)x+11 = 0

(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0

(x - 7)x . [(x - 7) - (x - 7)11] = 0

=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0

- TH1: (x - 7)x = 0

=> x - 7 = 0

=> x = 7

- TH2:

[(x - 7) - (x - 7)11] = 0

=> x - 7 = (x -7)11

=> x - 7 = 1 hoặc x - 7 = 0

+ Nếu x - 7 = 1

x = 8

+ Nếu x - 7 = 0 (TH1)

- Vậy x = 7 hoặc x = 8

c, - Theo đề bài ta có:

\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)

- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)

=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)

=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)

=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)

\(x=\dfrac{2}{9}\)

- Vậy \(x=\dfrac{2}{9}\)

26 tháng 7 2017

help me

11 tháng 7 2020

a) \(A=x\cdot\left(-1\right)^n\cdot\left|x\right|\)

\(A=x\cdot\left(-1\right)\cdot x\)

\(A=-x^2\)

b) \(\frac{x}{y}-\frac{2}{3}=\frac{y}{z}-\frac{4}{5}=\frac{z}{t}-\frac{6}{7}=0\)và \(x+y+z+t=315\)

Xét :

\(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{6}=\frac{t}{7}\Leftrightarrow\frac{z}{15}=\frac{t}{\frac{35}{2}}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}\) và \(x+y+z+t=315\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{t}{\frac{35}{2}}=\frac{x+y+z+t}{8+12+15+\frac{35}{2}}=\frac{315}{\frac{105}{2}}=6\)

\(\frac{x}{8}=6\Leftrightarrow x=48\)

\(\frac{y}{12}=6\Leftrightarrow y=72\)

\(\frac{z}{15}=6\Leftrightarrow z=90\)

\(\frac{t}{\frac{35}{2}}=6\Leftrightarrow t=105\)

11 tháng 7 2020

ta có

 \(\frac{x}{y}-\frac{2}{3}=0\Leftrightarrow\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\)

\(\frac{y}{z}-\frac{4}{5}=0\Leftrightarrow\frac{y}{z}=\frac{4}{5}\Leftrightarrow\frac{y}{4}=\frac{z}{5}\)

\(\frac{z}{t}-\frac{6}{7}=0\Leftrightarrow\frac{z}{t}=\frac{6}{7}\Leftrightarrow\frac{z}{7}=\frac{t}{6}\)

ta lại có

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\left(1\right)\)

\(\hept{\begin{cases}\frac{y}{12}=\frac{z}{15}\\\frac{z}{7}=\frac{t}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{y}{84}=\frac{z}{105}\\\frac{z}{105}=\frac{t}{90}\end{cases}}}\Leftrightarrow\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\left(2\right)\)

ta kết hợp (1) và (2) 

\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\\\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\end{cases}}\Leftrightarrow\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}\)và \(x+y+z+t=315\)

theo tính chất dãy tỉ số = nhau

có \(\frac{x}{57}=\frac{y}{84}=\frac{z}{105}=\frac{t}{90}=\frac{x+y+z+t}{57+84+105+90}=\frac{315}{336}=\frac{15}{16}\)

thay vào

23 tháng 9 2017

a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)

\(5x+1=\pm\dfrac{6}{9}\)

+) \(5x+1=\dfrac{6}{9}\)

\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{9}\)

\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)

+) \(5x+1=\dfrac{-6}{9}\)

\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{3}\)

\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)

vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)

14 tháng 5 2020

1. 2n-3 ⋮ n+1

⇒2n+2-5 ⋮ n+1

⇒2(n+1)-5 ⋮ n+1

Do n∈Z

⇒n+1 ∈ Ư(-5)={-1,1,-5,5}

\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)

Vậy x∈{0,2,-4,6}

2. Ta có:

x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)

Thay vào biểu thức ta được:

\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)

\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)

\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)

Vậy biểu thức B có giá trị là -1

14 tháng 7 2020

+) Khi x dương ; n chẵn

A = x.1.x = x2

+) Khi x dương ; n lẻ

A = x.(-1).x = -x2

+) Khi x âm ; n chẵn 

A = -x.1.x = -x2

+) Khi x âm ; n lẻ

A = -x.(-1).x = x2 

14 tháng 7 2020

Cảm ơn bạn, lúc tối đi học thầy mình chữa i xì bạn luôn !

18 tháng 6 2017

Ta có:

\(\dfrac{x^2+7x+2}{x+7}=\dfrac{x^2+7x}{x+7}+\dfrac{2}{x+7}=x+\dfrac{2}{x+7}\)

Để \(x^2+7x+2⋮x+7\) thì \(2⋮x+7\)

\(\Rightarrow x+7\inƯ\left(2\right)\)

\(\Rightarrow x+7\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-9;-8;-6;-5\right\}\)

Vậy \(x\in\left\{-9;-8;-6;-5\right\}\) thì \(x^2+7x+2⋮x+7\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Ta có: \(\left(x^2+7x+2\right)⋮x+7\)

\(\Rightarrow x\left(x+7\right)+2⋮x+7\)

\(x\left(x+7\right)⋮x+7\)

\(\Rightarrow2⋮x+7\)

\(\Rightarrow x+7\inƯ\left(2\right)\)

\(\Rightarrow x+7\in\left\{\pm1;\pm2\right\}\)

_ Nếu \(x+7=1\Rightarrow x=-6\) (nhận)

_ Nếu \(x+7=-1\Rightarrow x=-8\) (nhận)

_ Nếu \(x+7=2\Rightarrow x=-5\) (nhận)

_ Nếu \(x+7=-2\Rightarrow x=-9\) (nhận)

Vậy \(x\in\left\{-6;-8;-5;-9\right\}\).