1,tìm x
(2^5:2^3)*2^x=64
2,tính
F=1 +3 +3^2 + 3^3+………+3^9
Giải giúp với mk đag cần gấp giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a, \(\frac{31}{12}-(\frac{2}{5}+x)=\frac{2}{3}\)
\(\Rightarrow\frac{2}{5}+x=\frac{31}{12}-\frac{2}{3}=\frac{23}{12}\)
\(\Rightarrow\frac{23}{12}-\frac{31}{12}=\frac{-8}{12}=\frac{-2}{3}\)
Câu b để mk làm sau
\(2\cdot11^x=\left(3^2+2\right)^3:\left(5^3-2^5:2^3\right)\)
\(\Leftrightarrow11^x\cdot2=1331:121\)
\(\Leftrightarrow11^x\cdot2=11\)
=> Phương trình vô nghiệm
mk chỉ làm câu a thôi nha câu b mk ko hiểu đề
a) ( x+2) ^2 - 9 =0
<=> (x+2)^2 = 9
<=> (x+2)^2 = 3^2 =( -3)^2
TH1 (x+2)^2 = 3^2 TH2 (x+2)^2 = (-3)^2
x+2 = 3 => x =1 x+2 = -3 => x= -5
Vậy x=1 hoặc x= -5 CHÚC BẠN HOK TỐT
a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2
\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)
b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10
Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm
c/ ĐKXĐ: x - 5 >=0 <=> x >= 5
\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)
a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
b) \(\sqrt{x-10}=-2\)
⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm
c) \(\sqrt{\left(x-5\right)^2}=3\)
\(\Leftrightarrow\left|x-5\right|=3\)
TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)
Pt trở thành:
\(x-5=3\) (ĐK: \(x\ge5\))
\(\Leftrightarrow x=3+5\)
\(\Leftrightarrow x=8\left(tm\right)\)
TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)
Pt trở thành:
\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))
\(\Leftrightarrow-x+5=3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy: \(S=\left\{2;8\right\}\)
Vì (x+1).(x-2)=-2
=> (x+1);(x-2) thuộc Ư(-2)={-2;-1;1;2}
Ta có bảng sau:
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
x-2 | 1 | 2 | -2 | -1 |
x | 3 | 4 | 0 | 1 |
Vì x giống nhau nên ta chỉ chọn cặp x giống nhau
=> x=0 và x=1
Mik mới học lớp 6 nên chưa chắc nếu sai thì thông cảm nhé
(x+1) . (x-2) = -2
<=>x2-x-2=-2
<=>x2-x=0
<=>x(x-1)=0
<=>x=0 hoặc x-1=0
<=>x=0 hoặc 1
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
1)\(\left(2^5:2^3\right).2^x=64\)
\(\Rightarrow2^{5-3+x}=2^6\)
\(\Rightarrow2^{2+x}=2^6\)
\(\Rightarrow.2^22^x=2^6\)
\(\Rightarrow2^x=2^6:2^2\)
\(\Rightarrow2^x=2^4\Rightarrow x=4\)
2)Tính:
\(F=3^0+3^1+...+3^9\)
\(\Rightarrow3F=3\left(3^0+3^1+...+3^9\right)=3+3^2+3^3+...+3^{10}\)
\(3F-F=3+3^2+...+3^{10}-3^0-3^1-...-3^9\)
\(2F=3^{10}-3^0=3^{10}-1\)
\(F=\frac{3^{10}-1}{2}\)
2
ta có : F = 1 + 3 + 32 + ..... + 39
=> 3F = 3 + 32 + 33 +..... + 310
=> 3F - F = 310 - 1
=> 2F = 310 - 1
=> F = \(\frac{3^{10}-1}{2}\)