K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

mk chỉ làm câu a thôi nha câu b mk ko hiểu đề

a) ( x+2) ^2  -  9  =0 

<=> (x+2)^2 = 9 

<=> (x+2)^2  =  3^2 =( -3)^2

TH1 (x+2)^2  =  3^2                                                 TH2 (x+2)^2  =  (-3)^2 

      x+2 = 3 => x =1                                                           x+2 = -3 => x= -5

Vậy x=1 hoặc x= -5    CHÚC BẠN HOK TỐT

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0

\(\Rightarrow\)24x+10=0

\(\Rightarrow\)24x=-10

\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)

25 tháng 7 2021

b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2

\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2

\(\Rightarrow\)x2​-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2

\(\Rightarrow\)3x2-18x-22=3x2+2x+17

\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0

\(\Rightarrow\)-20x-39=0

\(\Rightarrow\)-20x=39

\(\Rightarrow\)x=\(-\dfrac{39}{20}\)

=>2x^2+2x-3x-3+x^2+2x=3x^2+12x+12

=>12x+12=x-3

=>11x=-15

=>x=-15/11

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

17 tháng 6 2016

\(a,x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x+1=x^2+2x+1\)

\(\Leftrightarrow x^2+2x+1-x-1\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\left(+\right)x=0\)

\(\left(+\right)x+1=0\Leftrightarrow x=-1\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)

\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)

\(\left(+\right)x=0\)

\(\left(+\right)x^2+1=0\)

Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)

\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm 

Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)

17 tháng 6 2016

cảm ơn bn j đó nha :))))

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

31 tháng 7 2023

E = - \(x^2\) + 2\(x\) - 1                                           

E = - (\(x^2\) - 2\(x\) + 1)

E = - (\(x\) - 1)2

(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0

Emax = 0 ⇔ \(x\) = 1

 

31 tháng 7 2023

Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.

Lấy đạo hàm của E theo x, ta được:

E' = -2x + 2

Đặt E' bằng 0 và tìm x:

-2x + 2 = 0
-2x = -2
x = 1

Vậy điểm tới hạn của E là x=1.

Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.

Lấy đạo hàm của C theo x, ta được:

C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)

Đặt C' bằng 0 và giải tìm x:

(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0

Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.

5 tháng 8 2020

Bài 9 : Tìm x, biết :

a, (x - 2)(x - 3) + (x - 2) - 1 = 0

\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy x ={1; 3}

b, (x + 2)2 - 2x(2x + 3) = (x + 1)2

\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x

\(\Leftrightarrow6x^3+x^2-2x=0\)

\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)

\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)

\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)