Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
=>2x^2+2x-3x-3+x^2+2x=3x^2+12x+12
=>12x+12=x-3
=>11x=-15
=>x=-15/11
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(a,x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1=x^2+2x+1\)
\(\Leftrightarrow x^2+2x+1-x-1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x+1=0\Leftrightarrow x=-1\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\)
\(b,x^3+x=0\Leftrightarrow x\left(x^2+1\right)=0\)
\(\left(+\right)x=0\)
\(\left(+\right)x^2+1=0\)
Vì \(x^2\ge0;1>0\Rightarrow x^2+1>0\)
\(\Rightarrow\) Phương trình \(x^2+1=0\) vô nghiệm
Vậy Phương trình có tập nghiệm \(S=\left\{0\right\}\)
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
E = - \(x^2\) + 2\(x\) - 1
E = - (\(x^2\) - 2\(x\) + 1)
E = - (\(x\) - 1)2
(\(x\) - 1) ≥ 0 ⇒ - (\(x\) - 1)2 ≤ 0
Emax = 0 ⇔ \(x\) = 1
Để tìm các điểm tới hạn của hàm E, chúng ta cần tìm các giá trị của x tại đó đạo hàm của E bằng 0.
Lấy đạo hàm của E theo x, ta được:
E' = -2x + 2
Đặt E' bằng 0 và tìm x:
-2x + 2 = 0
-2x = -2
x = 1
Vậy điểm tới hạn của E là x=1.
Để tìm các điểm tới hạn của hàm C, chúng ta cần tìm các giá trị của x tại đó đạo hàm của C bằng 0.
Lấy đạo hàm của C theo x, ta được:
C' = (2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16)
Đặt C' bằng 0 và giải tìm x:
(2x)(3x-10)(3x-16) + (x^2-1)(3)(3x-10) + (x^2-1)(3)(3x-16) = 0
Phương trình này khá phức tạp và không có nghiệm đơn giản. Nó sẽ yêu cầu thao tác đại số hơn nữa hoặc các phương pháp số để tìm các điểm tới hạn của C.
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)
mk chỉ làm câu a thôi nha câu b mk ko hiểu đề
a) ( x+2) ^2 - 9 =0
<=> (x+2)^2 = 9
<=> (x+2)^2 = 3^2 =( -3)^2
TH1 (x+2)^2 = 3^2 TH2 (x+2)^2 = (-3)^2
x+2 = 3 => x =1 x+2 = -3 => x= -5
Vậy x=1 hoặc x= -5 CHÚC BẠN HOK TỐT